Journal of Medicinal Chemistry
Article
(4) Wess, J.; Eglen, R. M.; Gautam, D. Muscarinic acetylcholine
receptors: mutant mice provide new insights for drug development.
Nat. Rev. Drug Discovery 2007, 6, 721−733.
(23) Yamada, M.; Basile, A. S.; Fedorova, I.; Zhang, W. L.; Duttaroy,
A.; Cui, Y. H.; Lamping, K. G.; Faraci, F. M.; Deng, C. X.; Wess, J.
Novel insights into M-5 muscarinic acetylcholine receptor function by
the use of gene targeting technology. Life Sci. 2003, 74, 345−353.
(24) Bridges, T. M.; Marlo, J. E.; Niswender, C. M.; Jones, C. K.;
Jadhav, S. B.; Gentry, P. R.; Plumley, H. C.; Weaver, C. D.; Conn, P. J.;
Lindsley, C. W. Discovery of the first highly M5-preferring muscarinic
acetylcholine receptor ligand, an M5 positive allosteric modulator
derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med.
Chem. 2009, 52, 3445−3448.
(25) Bridges, T. M.; Kennedy, J. P.; Cho, H. P.; Breininger, M. L.;
Gentry, P. R.; Hopkins, C. R.; Conn, P. J.; Lindsley, C. W. Chemical
lead optimization of a pan G(q) mAChR M-1, M-3, M-5 positive
allosteric modulator (PAM) lead. Part I: Development of the first
highly selective M-5 PAM. Bioorg. Med. Chem. Lett. 2010, 20, 558−
562.
(5) Bonner, T. I.; Young, A. C.; Brann, M. R.; Buckley, N. J. Cloning
and expression of the human and rat M5 muscarinic acetylcholine-
receptor genes. Neuron 1988, 1, 403−410.
(6) Raffa, R. B. The M5 muscarinic receptor as possible target for
treatment of drug abuse. J. Clin. Pharm. Ther. 2009, 34, 623−629.
(7) Di Chiara, G.; Imperato, A. Drugs abused by humans
preferentially increase synaptic dopamine concentrations in the
mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. U.S.A.
1988, 85, 5274−5278.
(8) Koob, G. F.; Swerdlow, N. R. The functional output of the
mesolimbic dopamine system. Ann. N.Y. Acad. Sci. 1988, 537, 216−
227.
(9) Koob, G. F.; Nestler, E. J. The neurobiology of drug addiction. J.
(26) Bridges, T. M.; Kennedy, J. P.; Hopkins, C. R.; Conn, P. J.;
Lindsley, C. W. Heterobiaryl and heterobiaryl ether derived M5
positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 20,
5617−5622.
(27) Liu, J.; Schoneberg, T.; van Rhee, M.; Wess, J. Mutational
analysis of the relative orientation of transmembrane helices I and VII
in G protein-coupled receptors. J. Biol. Chem. 1995, 270, 19532−
19539.
(28) Bohme, T. M.; Keim, C.; Dannhardt, G.; Mutschler, E.;
Lambrecht, G. Design and pharmacology of quinuclidine derivatives as
M2-selective muscarinic receptor ligands. Bioorg. Med. Chem. Lett.
2001, 11, 1241−1243.
(29) Bohme, T. M.; Augelli-Szafran, C. E.; Hallak, H.; Pugsley, T.;
Serpa, K.; Schwarz, R. D. Synthesis and pharmacology of benzoxazines
as highly selective antagonists at M(4) muscarinic receptors. J. Med.
Chem. 2002, 45, 3094−3102.
(30) Choppin, A.; Stepan, G. J.; Loury, D. N.; Watson, N.; Eglen, R.
M. Characterization of the muscarinic receptor in isolated uterus of
sham operated and ovariectomized rats. Br. J. Pharmacol. 1999, 127,
1551−1558.
(31) Wang, Y.; Chackalamannil, S.; Hu, Z.; Greenlee, W. J.; Clader,
J.; Boyle, C. D.; Kaminski, J. J.; Billard, W.; Binch, H., 3rd; Crosby, G.;
Ruperto, V.; Duffy, R. A.; Cohen-Williams, M.; Coffin, V. L.; Cox, K.
A.; Grotz, D. E.; Lachowicz, J. E. Improving the oral efficacy of CNS
drug candidates: discovery of highly orally efficacious piperidinyl
piperidine M2 muscarinic receptor antagonists. J. Med. Chem. 2002, 45,
5415−5418.
(32) Sagara, Y.; Sagara, T.; Uchiyama, M.; Otsuki, S.; Kimura, T.;
Fujikawa, T.; Noguchi, K.; Ohtake, N. Identification of a novel 4-
aminomethylpiperidine class of M3 muscarinic receptor antagonists
and structural insight into their M3 selectivity. J. Med. Chem. 2006, 49,
5653−5663.
(33) Augelli-Szafran, C. E.; Blankley, C. J.; Jaen, J. C.; Moreland, D.
W.; Nelson, C. B.; Penvose-Yi, J. R.; Schwarz, R. D.; Thomas, A. J.
Identification and characterization of m1 selective muscarinic receptor
antagonists. J. Med. Chem. 1999, 42, 356−363.
(34) Solymar, M. F., E.; Fulop, F. Enzyme-catalyzed kinetic
resolution of piperidine hydroxy esters. Tetrahedron: Asymmetry
2004, 15, 3281−3287.
(35) Inokuchi, E.; Narumi, T.; Niida, A.; Kobayashi, K.; Tomita, K.;
Oishi, S.; Ohno, H.; Fujii, N. Efficient synthesis of trifluoromethyl and
related trisubstituted alkene dipeptide isosteres by palladium-catalyzed
carbonylation of amino acid derived allylic carbonates. J. Org. Chem.
2008, 73, 3942−3945.
(36) Anagnostaras, S. G.; Murphy, G. G.; Hamilton, S. E.; Mitchell, S.
L.; Rahnama, N. P.; Nathanson, N. M.; Silva, A. J. Selective cognitive
dysfunction in acetylcholine M1 muscarinic receptor mutant mice.
Nat. Neurosci. 2003, 6, 51−58.
(37) Gerber, D. J.; Sotnikova, T. D.; Gainetdinov, R. R.; Huang, S. Y.;
Caron, M. G.; Tonegawa, S. Hyperactivity, elevated dopaminergic
transmission, and response to amphetamine in M1 muscarinic
acetylcholine receptor-deficient mice. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 15312−15317.
Neuropsychiatry Clin. Neurosci. 1997, 9, 482−497.
(10) Cami, J.; Farre, M. Drug addiction. N. Engl. J. Med. 2003, 349,
975−986.
(11) Vilaro, M. T.; Palacios, J. M.; Mengod, G. Localization of M5
muscarinic receptor messenger-RNA in rat-brain examined by in situ
hybridization histochemistry. Neurosci. Lett. 1990, 114, 154−159.
(12) Yasuda, R. P.; Ciesla, W.; Flores, L. R.; Wall, S. J.; Li, M.; Satkus,
S. A.; Weisstein, J. S.; Spagnola, B. V.; Wolfe, B. B. Development of
antisera selective for M4 and M5 muscarinic cholinergic receptors
distribution of M4 and M5 receptors in rat-brain. Mol. Pharmacol. 1993,
43, 149−157.
(13) Weiner, D. M.; Brann, M. R. Distribution of M1−M5 muscarinic
receptor messenger-RNAs in rat-brain. Trends Pharmacol. Sci. 1989,
115−115.
(14) Reever, C. M.; FerrariDiLeo, G.; Flynn, D. D. The M5 (m5)
receptor subtype: fact or fiction? Life Sci. 1997, 60, 1105−1112.
(15) Yeomans, J. S.; Takeuchi, J.; Baptista, M.; Flynn, D. D.; Lepik,
K.; Nobrega, J.; Fulton, J.; Ralph, M. R. Brain-stimulation reward
thresholds raised by an antisense oligonucleotide for the M5
muscarinic receptor infused near dopamine cells. J. Neurosci. 2000,
20, 8861−8867.
(16) Miller, A. D.; Blaha, C. D. Midbrain muscarinic receptor
mechanisms underlying regulation of mesoaccumbens and nigrostriatal
dopaminergic transmission in the rat. Eur. J. Neurosci. 2005, 21, 1837−
1846.
(17) Lester, D. B.; Miller, A. D.; Blaha, C. D. Muscarinic receptor
blockade in the ventral tegmental area attenuates cocaine enhance-
ment of laterodorsal tegmentum stimulation-evoked accumbens
dopamine efflux in the mouse. Synapse 2010, 64, 216−223.
(18) Yamada, M.; Lamping, K. G.; Duttaroy, A.; Zhang, W. L.; Cui,
Y. H.; Bymaster, F. P.; McKinzie, D. L.; Felder, C. C.; Deng, C. X.;
Faraci, F. M.; Wess, J. Cholinergic dilation of cerebral blood vessels is
abolished in M5 muscarinic acetylcholine receptor knockout mice.
Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14096−14101.
(19) Basile, A. S.; Fedorova, I.; Zapata, A.; Liu, X.; Shippenberg, T.;
Duttaroy, A.; Yamada, M.; Wess, J. Deletion of the M5 muscarinic
acetylcholine receptor attenuates morphine reinforcement and with-
drawal but not morphine analgesia. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 11452−11457.
(20) Fink-Jensen, A.; Sorensen, L.; Bay-Richter, C.; Frikke-Schmidt,
H.; Wess, J.; Woldbye, D. P.; Wortwein, G. Involvement of the M5
muscarinic receptor in cocaine and amphetamine induced behaviour:
studies in M5 knockout mice backcrossed to the C57BL/6NTac strain.
Schizophr. Res. 2006, 81, 301−302.
(21) Thomsen, M.; Woldbye, D. P. D.; Wortwein, G.; Fink-Jensen,
A.; Wess, J.; Caine, S. B. Reduced cocaine self-administration in
muscarinic M-5 acetylcholine receptor-deficient mice. J. Neurosci.
2005, 25, 8141−8149.
(22) Rezayof, A.; Nazari-Serenjeh, F.; Zarrindast, M. R.; Sepehri, H.;
Delphi, L. Morphine-induced place preference: involvement of
cholinergic receptors of the ventral tegmental area. Eur. J. Pharmacol.
2007, 562, 92−102.
1702
dx.doi.org/10.1021/jm301774u | J. Med. Chem. 2013, 56, 1693−1703