photocatalysts8g have shown wide application for CÀH
activation, while most of the other metal catalysts have shown
limited scope. Due to the increasing demand for sustain-
able methods in organic synthesis, it is imperative to design
metal-free reactions under aerobic conditions. Apart from
reports by Konig8g (eosin Y) and our group (DDQ),11a to
the best of our knowledge, functionalization of THIQ and
coupling with nucleophiles using metal-free conditions
are scarce.8c,g,11a In light of the environmental benefits of
metal-free reactions and continuation of our work on CÀH
activation,6f,9f,11 we envisioned using I2 for CÀH function-
alization to form CÀC bonds.12,13 Herein we report an
iodine catalyzed CDC (cross-dehydrogentive coupling) re-
action of a wide variety of nucleophiles with THIQs using
O2 as an oxidant under ambient conditions.
Extensive screening with THIQ (1a) and 4-hydroxycou-
marin (2a) revealed that I2 (10 mol %) and O2 or aq TBHP or
NaOCl are effective combinations for the CÀH bond func-
tionalization of THIQ followed by CÀC bond formation to
form 3aa (entries 1À3, Table 1). The reactions in the absence
of oxidants did not proceed to completion (entry 4). To find
out whether iodine is necessary for the CDC, 1a was reacted
with 2a in the absence of iodine, and in the presence of
oxidants such as aq. TBHP or O2 (entry 5). However, this
reaction did not furnish the coupled product 3aa (entry 5).
Lowering the amount of iodine to 5 mol % furnished a low
yield of 3aa (entry 6, Table 1). Other iodine sources such as
TBAI, NaI, KI, and NIS with aq. TBHP, H2O2, or O2
furnished low yields (entries 7À14, Table 1). Further, it was
found that CuI and I2 in the presence of air produced low
yields of 3aa (entries 15À16, Table 1). Solvent screening stud-
ies revealed that MeOH is the most suitable solvent as other
solvents furnished low yields of the product (entries 17À23).
Table 1. Screening Studiesa
entry
iodine source
oxidant
solvent
conversionb
1
I2 (10 mol %)
O2
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
MeOH
H2O
98
95
93
23
NR
70
77
29
13
67
8
72
10
72
78
75
NR
88
52
23
65
44
51
2
3
4
I
I
I
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
aqTBHP
NaOCl
none
5
6
7
8
none
2 (5 mol %)
aqTBHP or O2
I
aqTBHP
aqTBHP
H2O2
O2
aqTBHP
O2
aqTBHP
O2
O2
air
air
O2
O2
TBAI (10 mol %)
TBAI (10 mol %)
TBAI (10 mol %)
NaI (10 mol %)
NaI (10 mol %)
KI (10 mol %)
KI (10 mol %)
NIS (10 mol %)
CuI (10 mol %)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
I
I
I
I
I
I
I
I
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
2 (10 mol %)
CH2Cl2
EtOAc
DMF
THF
toluene
CH3CN
O2
O2
O2
O2
O2
a Reaction conditions: 1a (0.24 mmol), 2a (0.29 mmol), solvent
(1 mL), I2 (10 mol %), O2 atmosphere. b Based on 1H NMR data.
As O2 is environmentally benign and readily available, further
studies were conducted using a variety of nucleophiles and
various THIQ derivatives using a catalytic amount of I2
(10 mol %) and O2 under ambient reaction conditions.
The scope of the coupling reaction was studied using a
variety of THIQ derivatives and coumarin derivatives.
Thus, N-phenyltetrahydroisoquinoline (1a), N-(4-methyl-
phenyl)tetrahydroisoquinoline (1b), N-(4-methoxyphenyl)-
tetrahydroisoquinoline (1c), and N-(4-bromophenyl)tetra-
hydroisoquinoline (1d) reacted well with coumarin nucleophiles
such as 4-hydroxycoumarin (2a) and 4-hydroxy-6-methyl-
coumarin (2b) to furnish coupled products 3aa, 3ab, 3ba,
3bb, 3ca, 3cb, 3da, and 3db in good to excellent yields
(Scheme1). Itisnoteworthythatthisisthe second reportof
coupling 4-hydroxycoumarins with THIQ derivatives.11a
Further exploration revealed that nitroalkanes are also
good nucleophiles for this reaction (Scheme 2). The initial
reaction of THIQ 1a with nitromethane (4a) was very sluggish
and resulted in low yields of coupled product 5aa.14 However,
addition of silica gel, as an additive, circumvented this
problem by bringing a spectacular change in product yields.
As can be seen, nitromethane (4a) and nitroethane (4b)
coupled readily with THIQs 1a,1b,and1d to furnish products
5aa, 5ab, 5ba, 5bb, 5da, and 5db in excellent yields (Scheme 2).
(9) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968–6969. (b)
€
Ghobrial, M.; Harhammer, K.; Mihovilovic, M. D.; Schnurch, M.
Chem. Commun. 2010, 8836–8838. (c) Liu, P.; Zhou, C.-Y.; Xiang, S.;
Che, C.-M. Chem. Commun. 2010, 46, 2739–2741. (d) Yang, F.; Li, J.;
Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214–5217. (e) Wang, M.-Z.;
Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem.;Eur. J. 2010, 16, 5723–
5735. (f) Alagiri, K.; Kumara, G. S. R.; Prabhu, K. R. Chem. Commun.
2011, 47, 11787–11789.
(10) (a) Basle, O.; Li, C.-J. Chem. Commun. 2009, 4124–4126. (b)
Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679–
8681. (c) Leonard, N. J.; Leubner, G. H. J. Am. Chem. Soc. 1949, 71,
3408. (d) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S.
J. Org. Chem. 1984, 49, 269–276. (e) Vadola, P. A.; Sames, D. J. Am.
Chem. Soc. 2009, 131, 16525. (f) Zhang, C.; Kanta, De, C.; Mal, R.;
Seidel, D. J. Am. Chem. Soc. 2008, 130, 416. (g) Mori, K.; Sueoka, S.;
Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
(11) (a) Alagiri, K.; Devadig, P.; Prabhu, K. R. Chem.;Eur. J. 2012,
18, 5160–5164. (b) Alagiri, K.; Devadig, P.; Prabhu, K. R. Tetrahedron
Lett. 2012, 53, 1456–1459.
(12) (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science
2010, 328, 1376–1379. (b) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara,
K. Angew. Chem., Int. Ed. 2011, 50, 5331–5334. (c) Froehr, T.;
Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J.
Org. Lett. 2011, 13, 3754–3757. (d) Wei, W.; Zhang, C.; Xu, Y.; Wan, X.
Chem. Commun. 2011, 47, 10827–10829. (e) Ma, L.; Wang, X.; Yu, W.;
Han, B. Chem. Commun. 2011, 47, 11333–11335. (f) Jiang, H.; Huang,
H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561–5563. (g) Zhang, J.; Zhu,
D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841–2843. (h) He, T.;
Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016–5019.
(i) Kumar, A.; Gupta, G.; Srivastava, S. Org. Lett. 2011, 13, 6366–6369.
(13) (a) Lamani, M.; Prabhu, K. R. J. Org. Chem. 2011, 76, 7938–
7944. (b) Lamani, M.; Devadig, P.; Prabhu, K. R. Org. Biomol. Chem.
2012, 10, 2753–2579. (c) Lamani, M.; Prabhu, K. R. Chem.;Eur. J.
2012, 18, 14638–14642.
(14) The reaction of 1a and 5a in I2/O2 conditions (48 h) at rt yielded
40% of 5aa.
B
Org. Lett., Vol. XX, No. XX, XXXX