Macromolecules
Article
studies again identified a dense packed limit at a molecular
weight around 8000 Da. Furthermore, the same data indicated
that the larger polymer fractions possessed a more sterically
crowded environment that was more sensitive to ligand size
and geometry (when compared to the 4-substituted system).
This was encouraging and was backed up by initial catalytic
studies showing how the relative yields of oxidation product
obtained from the larger alkene were smaller than those
obtained using the smaller alkene. This suggested that shape
and size selectivity might be possible when oxidizing both
alkenes at the same time, and although the results did show an
improvement in selectivity, it was very small. In a final attempt
to impose steric demand at the core, a 2,6-disubstituted
porphyrin unit was used. The branching motif would force the
resulting polymer structure to grow directly over and around
the catalytic porphyrin core. Binding studies on this more
sterically demaning HBP system revealed a very different
binding profile to that obtained using the other porphyrin
cored systems. In the case of the 2,6 system, a linear decrease in
binding was observed as molecular weight increased, which
indicates a severe steric environment with any dense packed
limit being immediate and strong. Catalytic studies carried out
independently on the two alkenes revealed higher than
expected yields in both cases, which suggests that the polymer
environment (around the core) might be helping the catalytic
process. This effect seemed to be particularly strong for the
linear alkene, where increased relative yields were observed
with respect to molecular weight. When the two alkenes were
reacted together with the catalysts, a marked switch in relative
selectivity was observed. When yields were compared to those
obtained using the nonpolymeric catalysts, the inherently less
reactive linear substrate was 3−4 times more reactive relative to
the larger bulkier cyclic alkene (after normalization with respect
to the inherent background reactivities). We suggest that this
change in selectivity is due to the core’s branching motif, which
encourages growth over and around the reactive porphyrin,
rather than away from the core, as was the case with the other
core units.
ACKNOWLEDGMENTS
■
We thank the EPSRC for providing funds through the DTA
scheme to support a studentship.
REFERENCES
■
(1) (a) Liu, J.; Zhong, Y.; Lam, J. W. Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue,
Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z.
Macromolecules 2010, 43, 4921. (b) Zhu, S.-W.; Shi, W. F. Polym.
Degrad. Stab. 2002, 75, 543. (c) Kirkorian, K.; Ellis, A.; Twyman, L. J.
Chem. Soc. Res. 2012, 41, 6138.
(2) (a) Klajnert, B.; Peng, L.; Cena, V. Dendrimers in Biomedical
Applications; Royal Society of Chemistry: Cambridge, 2013.
(b) Reymond, J. L.; Darbre, T. Org. Biomol. Chem. 2012, 10, 1483.
(c) Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.;
Houa, W.; Zhuc, M.; Zhangb, G.; Shi, X. Biomaterials 2013, 34, 1570.
(d) Isea1, R.; Hoebeke1, J.; Mayo-García, R. Am. J. Bioinf. Comput.
Biol. 2013, 1, 1.
(3) (a) de Gennes, P. G.; Hervet, H. J. Phys. Lett. 1983, 44, 351.
(b) Lescanec, R.; Muthukumar, M. Macromolecules 199.0, 23, 2280.
(c) Pandita, D.; Santos, J. L.; Rodrigues, J. O.; Peg
̂
o, A. P.; Granja, P.
L.; Tomas, H. Biomacromolecules 2011, 12, 472.
́
(4) Newkome, G. R.; Moorefield, C. N.; Vogtle, F. Dendritic
̈
Molecules; VCH: Weinheim, 1996.
(5) Tomalia, D. A. New J. Chem. 2012, 36, 264.
(6) Wallace, M.; Ellis, A.; Twyman, L. J. Chem. Commun. 2013, 49,
8063.
(7) (a) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am.
Chem. Soc. 1996, 118, 5708. (b) Bhyrappa, P.; Young, J. K.; Moore, J.
S.; Suslick, K. S. J. Mol. Catal. A: Chem. 1996, 113, 109.
(8) (a) Pulkkinen, J.; Zachar, P.; Borek, V. A.; Laatikainen, R.; Kral,
V. J. Mol. Catal. A: Chem. 2004, 219, 21. (b) Schenning, A. P. H. J.;
Hubert, D. H. W.; Feiters, M. C.; Nolte, R. J. M. Langmuir 1996, 12,
1572. (c) Niedercorn, F.; Ledon, H.; Tkatchenko, I. New J. Chem.
1988, 12, 897. (d) Ostovic, D.; Bruice, T. C. J. Am. Chem. Soc. 1989,
111, 6511. (e) Mashiko, T.; Dolphin, D.; Nakano, T.; Traylor, T. G. J.
Am. Chem. Soc. 1985, 107, 3735. (f) Schenning, A. P. H. J.; Spelberg, J.
H. L.; Hubert, D. H. W.; Feiters, M. C.; Molte, R. J. M. Chem.Eur. J.
1998, 4, 871.
(9) (a) Yates, C. R.; Hayes, W. Eur. Polym. J. 2004, 40, 1257.
(b) Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183. (c) Kim, Y. H. J.;
Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685. (d) Grayson, S. M.;
́
Frechet, J. M. J. Chem. Rev. 2001, 101, 3819.
If we compare these results to those obtained by Suslick and
Moore using analogous dendrimers, we can conclude that
HBPs can indeed be applied as genuine alternatives to
dendrimers in a number of advanced and high-tech
applicationsparticularly those requiring site isolation, encap-
sulation, and release. Notwithstanding this generic claim, it is
important to appreciate that simply “bulking up” the polymer is
not enough and that it is equally important to consider how the
polymer’s architecture and core branching motif will affect the
specific environment directly around any active site/core unit.
(10) (a) Liu, L.; Breslow, R. J. Am. Chem. Soc. 2002, 124 (18), 4978.
(b) Liu, L.; Rozenman, M.; Breslow, R. J. Am. Chem. Soc. 2002, 124
(43), 12660. (c) Kirby, A. J. Angew. Chem., Int. Ed. 1996, 35, 706.
(11) Holter, D.; Burgath, A.; Frey, H. Acta Polym. 1997, 48, 30.
̈
(12) King, A. S. H. K.; Martin, I.; Twyman, L. J. Chem. Soc. Res. 2002,
31, 69.
(13) Bharathi, P.; Moore, J. S. Macromolecules 2000, 33, 3212.
(14) Zheng, X.; Oviedo, I. R.; Twyman, L. J. Macromolecules 2008,
41, 7776.
(15) (a) Gittins, P. J.; Alston, J.; Ge, Y.; Twyman, L. J.
Macromolecules 2004, 37, 7428. (b) Twyman, L. J.; Ge, Y. Chem.
Commun. 2006, 1658. (c) Gittins, P. J.; Twyman, L. J. J. Am. Chem.
Soc. 2005, 127 (6), 1646.
ASSOCIATED CONTENT
■
(16) Turner, S. R.; Voit, B. I.; Mourey, T. H. Macromolecules 1993,
26, 4617.
S
* Supporting Information
Synthesis and characterization of all compounds. This material
(17) (a) Hulsman, N.; Medema, J. P.; Bos, C.; Jongejan, A.; Leurs, R.;
Smit, M. J.; de, E. I. J. P.; Richel, D.; Wijtmans, M. J. Med. Chem. 2007,
50, 2424. (b) Liao, C.-C.; Wang, C.-S.; Sheu, H.-S.; Lai, C. K.
Tetrahedron 2008, 64, 7977.
(18) Rothemund, P. J. Am. Chem. Soc. 1935, 57, 2010.
(b) Rothemund, P. J. Am. Chem. Soc. 1936, 58, 625.
(19) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.;
Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.
(20) Soret, J. L. C. R. Chim. 1883, 97, 1267.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(21) Caughey, W. S.; Kosk, W. S. Biochemistry 1962, 1 (5), 923.
S
dx.doi.org/10.1021/ma401344d | Macromolecules XXXX, XXX, XXX−XXX