Organic Letters
Letter
(2) (a) Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M. J. Am. Chem.
Soc. 2009, 131, 10629−10636. (b) Klomp, D.; Maschmeyer, T.;
Hanefeld, U.; Peters, J. A. Chem. - Eur. J. 2004, 10, 2088−2093. (c) Xu,
L.; Price, N. P. Carbohydr. Res. 2004, 339, 1173−1178. (d) Miyazaki, D.;
Nomura, K.; Ichihara, H.; Ohtsuka, Y.; Ikeno, T.; Yamada, T. New J.
Chem. 2003, 27, 1164−1166. (e) Jensen, D. R.; Schultz, M. J.; Mueller, J.
A.; Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810−3813.
(f) Rasmussen, T.; Jensen, J. F.; Østergaard, N.; Tanner, D.; Ziegler, T.;
Norrby, P. Chem. - Eur. J. 2002, 8, 177−184. (g) Andersson, P. G. J. Org.
Chem. 1996, 61, 4154−4156. (h) Liguori, A.; Mascaro, P.; Sindona, G.;
Uccella, N. J. Labelled Compd. Radiopharm. 1990, 28, 1277−1283.
(i) Polavarapu, P. L.; Fontana, L. P.; Smith, H. E. J. Am. Chem. Soc. 1986,
108, 94−99.
(3) (a) Yung, C. M.; Skaddan, M. B.; Bergman, R. G. J. Am. Chem. Soc.
2004, 126, 13033−13043. (b) Nishioka, T.; Shibata, T.; Kinoshita, I.
Organometallics 2007, 26, 1126−1128. (c) Klei, S. R.; Golden, J. T.;
Tilley, T. D.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 2092−2093.
(4) (a) Balzarek, C.; Weakley, T. J. R.; Tyler, D. R. J. Am. Chem. Soc.
2000, 122, 9427−9434. (b) Breno, K. L.; Tyler, D. R. Organometallics
2001, 20, 3864−3868.
respectively. Perhaps, base assisted H/D exchange or involve-
ment of a Ru(0) intermediate cannot be ruled out, which may
also play a crucial role in the deuterium scrambling. Complex 6-d
further reacts with alcohols (RCH2OD) to provide saturated
intermediate I (as observed in stoichiometric reaction, Scheme
2a). Further, β-hydride elimination of alkoxide ligand can result
in Ru-dihydride II. Base assisted Ru−H/D exchange of II with
solvent (D2O) provides II-d. Either by direct aldehyde insertion
into a Ru−D bond of II-d or by D2 liberation followed by
aldehyde coordination (III)/decoordination pathways, mono-
deuterated alkoxy-ligated intermediate I-d was generated.
Reductive elimination of alcohols from intermediate I-d can
provide alcohols with monodeuteration at the α-position,
regenerating 6-d to complete one cycle. Alternatively, I-d may
also undergo β-hydride elimination to result in II and the
subsequent transformations would result in I-d2 that can
reductively eliminate alcohols with complete deuteration at the
α-position of alcohols (RCD2OD).
In conclusion, Ru-macho catalyzed highly efficient selective
deuterations of assorted primary and secondary alcohols are
developed using deuterium oxide, the cheapest source of
deuterium. While primary alcohols underwent deuteration
predominantly at the α-position, the secondary alcohols were
deuterated at both α- and β-positions. The reaction proceeded by
O−D activation of deuterium oxide and alcohols by the Ru-
macho catalyst, and subsequently the alkoxide ligands were
dehydrogenated to the carbonyl compounds via amine−amide
metal−ligand cooperation. While the catalytic hydrogenation of
the carbonyl motif resulted in α-deuteration, β-deuteration
perhaps occurred via keto−enol tautomerization, which was
varied based on substrate and steric hindrance. High percentage
selective deuteration, mild experimental conditions, and the low
loading and commercial availability of the catalyst make the
process highly attractive for both laboratory and large-scale
preparation of useful deuterated alcohols.
(5) For Ru catalyzed reactions: (a) Khaskin, E.; Milstein, D. ACS Catal.
2013, 3, 448−452. (b) Bossi, G.; Putignano, E.; Rigo, P.; Baratta, W.
Dalton Trans. 2011, 40, 8986−8995 (D2O used as a deuterium source in
one entry). (c) Fujiwara, Y.; Iwata, H.; Sawama, Y.; Monguchi, Y.; Sajiki,
H. Chem. Commun. 2010, 46, 4977−4979. (d) Maegawa, T.; Fujiwara,
Y.; Inagaki, Y.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2008, 350,
2215−2218. (e) Takahashi, M.; Oshima, K.; Matsubara, S. Chem. Lett.
2005, 34, 192−193. (f) Tse, S. K. S.; Xue, P.; Lau, C. W. S.; Sung, H. H.
Y.; Williams, I. D.; Jia, G. Chem. - Eur. J. 2011, 17, 13918−13925.
(6) For reviews, see: (a) Gunanathan, C.; Milstein, D. Acc. Chem. Res.
2011, 44, 588−602. (b) Gunanathan, C.; Milstein, D. Top. Organomet.
Chem. 2011, 37, 55−84. (c) Gunanathan, C.; Milstein, D. Chem. Rev.
2014, 114, 12024−12087.
(7) (a) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.;
Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res.
Dev. 2012, 16, 166−171. (b) Nielsen, M.; Alberico, E.; Baumann, W.;
Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85−
89. (c) Otsuka, T.; Ishii, A.; Dub, P. A.; Ikariya, T. J. Am. Chem. Soc.
2013, 135, 9600−9603. (d) Oldenhuis, N. J.; Dong, V. M.; Guan, Z.
Tetrahedron 2014, 70, 4213−4218. (e) Oldenhuis, N. J.; Dong, V. M.;
Guan, Z. J. Am. Chem. Soc. 2014, 136, 12548−12551. (f) Monney, A.;
Barsch, E.; Sponholz, P.; Junge, H.; Ludwig, R.; Beller, M. Chem.
Commun. 2014, 50, 707−709.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(8) For ruthenium catalyzed H/D exchange with aromatic hydro-
carbons, see: (a) Prechtl, M. H. G.; Hoelscher, M.; Ben-David, Y.;
Theyssen, N.; Milstein, D.; Leitner, W. Eur. J. Inorg. Chem. 2008, 2008,
3493−3500. (b) Prechtl, M. H. G.; Hoelscher, M.; Ben-David, Y.;
Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. Angew. Chem., Int.
Ed. 2007, 46, 2269−2272.
1
2
Experimental Procedures, H, H, 13C, and 31P NMR
spectra and characterization data of compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
(9) For other Ru(II) hydroxyl-ligated complexes, see: (a) Reference
5a. (b) Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.;
Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Science 2009,
324, 74−77.
■
Notes
(11) Schneider, S.; Meiners, J.; Askevold, B. Eur. J. Inorg. Chem. 2012,
The authors declare no competing financial interest.
2012, 412−429.
(12) In situ monitoring of benzyl alcohol and 2-propanol deuteration
reactions catalyzed by complex 1 failed to predict involvement of any
carbonyl compounds.
ACKNOWLEDGMENTS
■
We thank SERB New Delhi (SR/S1/OC-16/2012 and SR/S2/
RJN-64/2010) and NISER for financial support. We are grateful
to Prof. Arindam Ghosh, NISER for his kind support. B.C. thanks
UGC for a research fellowship. C.G. is a Ramanujan Fellow.
(13) 1H and 13C NMR analyses of the reaction mixture indicated the
presence of unreacted 2-norbornanemethanol and the corresponding
ester in addition to the aldehyde.
(14) Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Nat. Chem.
2013, 5, 122−125.
REFERENCES
■
(1) (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem.,
Int. Ed. 2007, 46, 7744−7765. (b) Synthesis and Application of
Isotopically Labeled Compounds; Pleiss, U., Voges, R., Eds.; Wiley: New
York, 2001; Vol. 7. (c) Junk, T.; Catallo, W. J. Chem. Soc. Rev. 1997, 26,
401−406.
D
Org. Lett. XXXX, XXX, XXX−XXX