Chemical Research in Toxicology
Article
(16) Schmidt, E. M., Wiek, C., Parkinson, O. T., Roellecke, K.,
Freund, M., Gombert, M., Lottmann, N., Steward, C. A., Kramm, C.
M., Yarov-Yarovoy, V., Rettie, A. E., and Hanenberg, H. (2015)
Characterization of an Additional Splice Acceptor Site Introduced
into CYP4B1 in Hominoidae during Evolution. PLoS One 10,
No. e0137110.
(17) Hyster, T. K., and Rovis, T. (2010) Rhodium-catalyzed
oxidative cycloaddition of benzamides and alkynes via C-H/N-H
activation. J. Am. Chem. Soc. 132, 10565−10569.
(18) Li, C., Lin, D., Gao, H., Hua, H., Peng, Y., and Zheng, J. (2015)
N-Acetyl Lysine/Glutathione-Derived Pyrroles as Potential Ex Vivo
Biomarkers of Bioactivated Furan-Containing Compounds. Chem. Res.
Toxicol. 28, 384−393.
(19) Trott, O., and Olson, A. J. (2009) Auto Dock Vina: improving
the speed and accuracy of docking with a new scoring function,
efficient optimization and multithreading. J. Comput. Chem. 31, 455−
461.
(20) Hsu, M. H., Baer, B. R., Rettie, A. E., and Johnson, E. F. (2017)
The Crystal Structure of Cytochrome P450 4B1 (CYP4B1)
Monooxygenase Complexed with Octane Discloses Several Structural
Adaptations for omega-Hydroxylation. J. Biol. Chem. 292, 5610−5621.
(21) O’Boyle, N. M., Banck, M., James, C. A., Morley, C.,
Vandermeersch, T., and Hutchison, G. R. (2011) Open Babel: An
open chemical toolbox. J. Cheminf. 3, 33.
(22) Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S.,
Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF
Chimera–a visualization system for exploratory research and analysis.
J. Comput. Chem. 25, 1605−1612.
(23) Baer, B. R., Schuman, J. T., Campbell, A. P., Cheesman, M. J.,
Nakano, M., Moguilevsky, N., Kunze, K. L., and Rettie, A. E. (2005)
Sites of covalent attachment of CYP4 enzymes to heme: evidence for
microheterogeneity of P450 heme orientation. Biochemistry 44,
13914−13920.
(24) McDonald, M. G., Ray, S., Amorosi, C. J., Sitko, K. A.,
Kowalski, J. P., Paco, L., Nath, A., Gallis, B., Totah, R. A., Dunham, M.
J., Fowler, D. M., and Rettie, A. E. (2017) Expression and Functional
Characterization of Breast Cancer-Associated Cytochrome P450 4Z1
in Saccharomyces cerevisiae. Drug Metab. Dispos. 45, 1364−1371.
(25) Peterson, L. A. (2013) Reactive metabolites in the
biotransformation of molecules containing a furan ring. Chem. Res.
Toxicol. 26, 6−25.
(26) de Montellano, P. R. O. (2018) 1-Aminobenzotriazole: A
Mechanism-Based Cytochrome P450 Inhibitor and Probe of
Cytochrome P450 Biology. Med. Chem. (Los Angeles, CA, U. S.) 8, 38.
(27) Rowinsky, E. K., Noe, D. A., Ettinger, D. S., Christian, M. C.,
Lubejko, B. G., Fishman, E. K., Sartorius, S. E., Boyd, M. R., and
Donehower, R. C. (1993) Phase I and pharmacological study of the
pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung
cancer patients: hepatotoxicity is dose limiting in humans. Cancer Res.
53, 1794−1801.
(28) Gillette, J. R. (1974) Commentary. A perspective on the role of
chemically reactive metabolites of foreign compounds in toxicity. I.
Correlation of changes in covalent binding of reactivity metabolites
with changes in the incidence and severity of toxicity. Biochem.
Pharmacol. 23, 2785−2794.
(29) Obach, R. S., Kalgutkar, A. S., Soglia, J. R., and Zhao, S. X.
(2008) Can in vitro metabolism-dependent covalent binding data in
liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs?
An analysis of 18 drugs with consideration of intrinsic clearance and
daily dose. Chem. Res. Toxicol. 21, 1814−1822.
(30) Chen, L. J., DeRose, E. F., and Burka, L. T. (2006) Metabolism
of furans in vitro: ipomeanine and 4-ipomeanol. Chem. Res. Toxicol.
19, 1320−1329.
REFERENCES
■
(1) Edson, K. Z., and Rettie, A. E. (2013) CYP4 enzymes as
potential drug targets: focus on enzyme multiplicity, inducers and
inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic
acid (20-HETE) synthase and fatty acid omega-hydroxylase activities.
Curr. Top. Med. Chem. 13, 1429−1440.
(2) Baer, B. R., and Rettie, A. E. (2006) CYP4B1: an enigmatic P450
at the interface between xenobiotic and endobiotic metabolism. Drug
Metab. Rev. 38, 451−476.
(3) Zheng, Y. M., Fisher, M. B., Yokotani, N., Fujii-Kuriyama, Y., and
Rettie, A. E. (1998) Identification of a meander region proline residue
critical for heme binding to cytochrome P450: implications for the
catalytic function of human CYP4B1. Biochemistry 37, 12847−12851.
(4) Wiek, C., Schmidt, E. M., Roellecke, K., Freund, M., Nakano, M.,
Kelly, E. J., Kaisers, W., Yarov-Yarovoy, V., Kramm, C. M., Rettie, A.
E., and Hanenberg, H. (2015) Identification of amino acid
determinants in CYP4B1 for optimal catalytic processing of 4-
ipomeanol. Biochem. J. 465, 103−114.
(5) Baer, B. R., Rettie, A. E., and Henne, K. R. (2005) Bioactivation
of 4-ipomeanol by CYP4B1: adduct characterization and evidence for
an enedial intermediate. Chem. Res. Toxicol. 18, 855−864.
(6) Roellecke, K., Virts, E. L., Einholz, R., Edson, K. Z., Altvater, B.,
Rossig, C., von Laer, D., Scheckenbach, K., Wagenmann, M.,
Reinhardt, D., Kramm, C. M., Rettie, A. E., Wiek, C., and
Hanenberg, H. (2016) Optimized human CYP4B1 in combination
with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene
system for adoptive T-cell therapies. Gene Ther. 23, 615−626.
(7) Bonini, C., and Mondino, A. (2015) Adoptive T-cell therapy for
cancer: The era of engineered T cells. Eur. J. Immunol. 45, 2457−
2469.
(8) Ciceri, F., Bonini, C., Gallo-Stampino, C., and Bordignon, C.
(2005) Modulation of GvHD by suicide-gene transduced donor T
lymphocytes: clinical applications in mismatched transplantation.
Cytotherapy 7, 144−149.
(9) Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S.,
Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T.
M., Robinson, E., Steevens, N. N., Chaney, C., Soma, L., Chen, X.,
Yeung, C., Wood, B., Li, D., Cao, J., Heimfeld, S., Jensen, M. C.,
Riddell, S. R., and Maloney, D. G. (2016) CD19 CAR-T cells of
defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin.
Invest. 126, 2123.
(10) Statham, C. N., Dutcher, J. S., Kim, S. H., and Boyd, M. R.
(1982) Ipomeanol 4-glucuronide, a major urinary metabolite of 4-
ipomeanol in the rat. Drug Metab. Dispos. 10, 264−267.
(11) Parkinson, O. T., Teitelbaum, A. M., Whittington, D., Kelly, E.
J., and Rettie, A. E. (2016) Species Differences in Microsomal
Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to
Target Organ Toxicity. Drug Metab. Dispos. 44, 1598−1602.
(12) Teitelbaum, A. M., McDonald, M. G., Kowalski, J. P.,
Parkinson, O. T., Scian, M., Whittington, D., Roellecke, K.,
Hanenberg, H., Wiek, C., and Rettie, A. E. (2019) Influence of
Stereochemistry on the Bioactivation and Glucuronidation of 4-
Ipomeanol. J. Pharmacol. Exp. Ther. 368, 308−316.
(13) Roellecke, K., Jager, V. D., Gyurov, V. H., Kowalski, J. P.,
Mielke, S., Rettie, A. E., Hanenberg, H., Wiek, C., and Girhard, M.
(2017) Ligand characterization of CYP4B1 isoforms modified for
high-level expression in Escherichia coli and HepG2 cells. Protein Eng.,
Des. Sel. 30, 205−216.
(14) Cheesman, M. J., Baer, B. R., Zheng, Y. M., Gillam, E. M., and
Rettie, A. E. (2003) Rabbit CYP4B1 engineered for high-level
expression in Escherichia coli: ligand stabilization and processing of
the N-terminus and heme prosthetic group. Arch. Biochem. Biophys.
416, 17−24.
(15) Chen, W., Koenigs, L. L., Thompson, S. J., Peter, R. M., Rettie,
A. E., Trager, W. F., and Nelson, S. D. (1998) Oxidation of
acetaminophen to its toxic quinone imine and nontoxic catechol
metabolites by baculovirus-expressed and purified human cyto-
chromes P450 2E1 and 2A6. Chem. Res. Toxicol. 11, 295−301.
(31) Fisher, M. B., Zheng, Y. M., and Rettie, A. E. (1998) Positional
specificity of rabbit CYP4B1 for omega-hydroxylation1 of short-
medium chain fatty acids and hydrocarbons. Biochem. Biophys. Res.
Commun. 248, 352−355.
(32) Silverman, R. B. (1988) Mechanism-Based Enzyme Inactivation:
Chemistry and Enzymology; CRC Press.
J
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX