ChemComm
Communication
2 (a) Special issue on ‘‘Fluorine in the Life Sciences’’, ChemBioChem,
2004, 5, 570; (b) K. Mu¨ller, C. Faeh and F. Diederich, Science, 2007,
317, 1881; (c) Fluorine in Medicinal Chemistry and Chemical Biology,
ed. I. Ojima, Wiley-Blackwell, Chichester, 2009.
3 For recent reviews on synthesis of CF3-containing molecules, see:
(a) J.-A. Ma and D. Cahard, Chem. Rev., 2004, 104, 6119;
(b) M. Shimizu and T. Hiyama, Angew. Chem., Int. Ed., 2005, 44, 214;
(c) J.-A. Ma and D. Cahard, J. Fluorine Chem., 2007, 128, 975;
(d) N. Shibata, S. Mizuta and T. Toru, J. Synth. Org. Chem. Jpn., 2008,
66, 215; (e) J.-A. Ma and D. Cahard, Chem. Rev., 2008, 108, PR1;
( f ) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470.
4 For recent reviews on synthesis of CF3-containing aromatic compounds,
see: (a) I. Katsuyama, J. Synth. Org. Chem. Jpn., 2009, 67, 992; (b) H. Amii,
J. Synth. Org. Chem. Jpn., 2011, 69, 752; (c) O. A. Tomashenko and
V. V. Grushin, Chem. Rev., 2011, 111, 4475; (d) T. Besset, C. Schneider
and D. Cahard, Angew. Chem., Int. Ed., 2012, 51, 5048.
Scheme 2 A plausible reaction mechanism.
5 A. Rivkin, T.-C. Chou and S. J. Danishefsky, Angew. Chem., Int. Ed.,
2005, 44, 2838.
6 (a) M. Shimizu, Y. Takeda, M. Higashi and T. Hiyama, Angew. Chem.,
Int. Ed., 2009, 48, 3653; (b) M. Shimizu, Y. Takeda, M. Higashi and
T. Hiyama, Chem.–Asian J., 2011, 6, 2536; (c) Z. Shi, J. Davies,
S.-H. Jang, W. Kaminsky and A. K.-Y. Jen, Chem. Commun., 2012,
48, 7880.
7 T. P. Selby, Preparation of substituted fused heterocyclic herbicides,
PCT International Patent Application US5389600 (A), 1995.
8 (a) P. Eisenberger, S. Gischig and A. Togni, Chem.–Eur. J., 2006,
12, 2579; (b) I. Kieltsch, P. Eisenberger and A. Togni, Angew. Chem.,
Int. Ed., 2007, 46, 754.
Next, vinylborates containing heteroaryl groups such as thio-
phene, pyridine, quinoline and benzothiazole were examined.
Hetero-aromatic substrates are relevant to pharmaceuticals and
agrochemicals because hetero-arenes are ubiquitous structures in
biologically active compounds.18 Remarkably, the photocatalytic
reactions of 2m–t gave the corresponding CF3-substituted alkenes
3m–t with excellent E/Z selectivities (>96/o4) in good yields
(56–82%). The catalytic formation of Calkenyl–CF3 bonds connected
with p-electron-deficient hetero-aromatics has not been so far
reported,11 thus the present photocatalytic protocol might be attrac-
tive from the viewpoint of regio- and stereoselective introduction of a
CF3 group into these scaffolds. Furthermore, alkylvinylborates (2u
and v) can also be applicable to this photocatalytic system with
moderate selectivities and good yields (3u and v).
As a demonstration of scalability of this transformation, the
trifluoromethylation of 2s was carried out on a gram scale. As a
result, the trifluoromethylated alkene with quinoline moiety 3s,
which is a herbicide-related molecule,7 was obtained in good yield
(64%, 1.06 g) with excellent E/Z selectivity (>99/o1) (see the ESI†).
A plausible reaction mechanism based on a SET photoredox
process (oxidative quenching) is shown in Scheme 2. According to
our previous report,14c,19 ꢀCF3 canꢀbe generated from 1e-reduction of
electrophilic Togni’s reagent 1a. CF3 reacts with a CQC bond of
vinylborates 2 to give b-borato-stabilized radical intermediates20 in
a regioselective manner. Subsequent 1e-oxidation by the high-
oxidation state photocatalyst [Ru(bpy)3]3+ produces b-borato cation
intermediates. Finally predominant Peterson elimination of the
boron-based group with trans-selectivity provides (E)-trifluoro-
methylated alkenes 3.21 However we could not rule out the possibility
that a mechanism including radical chain propagation occurs.
In conclusion, we have developed a new and facile visible-light-
induced synthesis of a variety of trifluoromethylated alkenes using
a Ru photoredox catalyst. Togni’s reagent 1a plays an important
role as a CF3 radical source. This photocatalytic system allows easy
access to (E)-trifluoromethylated alkenes bearing electron-deficient
moieties such as p-electron-deficient hetero-aromatics. We expect
this protocol to be of broad utility in the synthesis of biologically
active organofluorine molecules.
9 T. Umemoto, Chem. Rev., 1996, 96, 1757, and references therein.
´
10 (a) Y. Mace and E. Magnier, Eur. J. Org. Chem., 2012, 2479;
(b) N. Shibata, A. Matsnev and D. Cahard, Beilstein J. Org. Chem.,
DOI: 10.3762/bjoc.6.65.
11 (a) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong, Y. Fu and L. Liu,
Chem. Commun., 2011, 47, 4300; (b) T. Liu and Q. Shen, Org. Lett.,
2011, 13, 2342; (c) A. T. Parsons, T. D. Senecal and S. L. Buchwald,
Angew. Chem., Int. Ed., 2012, 51, 2947; (d) Z. He, T. Luo, M. Hu,
Y. Cao and J. Hu, Angew. Chem., Int. Ed., 2012, 51, 3944;
´
(e) P. G. Janson, I. Ghoneim, N. O. IIchenko and K. J. Szabo, Org.
Lett., 2012, 14, 2882; ( f ) C. Feng and T.-P. Lou, Chem. Sci., 2012,
3, 3458.
12 D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77.
13 For recent reviews on photoredox catalysis, see: (a) T. P. Yoon,
M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527; (b) J. M. R.
Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011,
40, 102; (c) F. Tepl´y, Collect. Czech. Chem. Commun., 2011, 76, 859;
(d) J. W. Tucker and C. R. J. Stephenson, J. Org. Chem., 2012,
77, 1617; (e) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012,
51, 6828; ( f ) S. Maity and N. Zheng, Synlett, 2012, 1851.
14 (a) T. Koike and M. Akita, Chem. Lett., 2009, 166; (b) Y. Yasu, T. Koike
and M. Akita, Chem. Commun., 2012, 48, 5355; (c) Y. Yasu, T. Koike
and M. Akita, Angew. Chem., Int. Ed., 2012, 51, 9567; (d) T. Koike,
Y. Yasu and M. Akita, Chem. Lett., 2012, 999; (e) Y. Yasu, T. Koike
and M. Akita, Adv. Synth. Catal., 2012, 354, 3414.
15 (a) D. A. Nagib and D. W. C. MacMillan, Nature, 2011, 480, 224;
(b) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska and C. R. J.
Stephenson, J. Am. Chem. Soc., 2011, 133, 4160; (c) N. Iqbal, S. Choi,
E. Ko and E. J. Cho, Tetrahedron Lett., 2012, 53, 2005; (d) Y. Ye and
M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034; (e) C.-J. Wallentin,
J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, J. Am. Chem.
Soc., 2012, 134, 8875; ( f ) N. Iqbal, S. Choi, E. Kim and E. J. Cho,
J. Org. Chem., 2012, 77, 11383.
16 A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950, and references therein.
17 The photoexcited state of Ir(ppy)3 is a strong reductant (E1/2
=
ꢁ1.32 V vs. Cp2Fe), see: L. Flamigni, A. Barbieri, C. Sabatini,
B. Ventura and F. Barigelletti, Top. Curr. Chem., 2007, 281, 143.
19 Cyclic voltammograms of vinylborate 2a showed a broad irreversible
oxidation wave around E1/2 = +1.01 V vs. Cp2Fe. We excluded
generation of radicals from oxidation of vinylborates by the photo-
excited state of [Ru(bpy)3]2+ (E1/2 = +0.43 V vs. Cp2Fe).
The financial support from the Japanese government
(Grants-in-Aid for Scientific Research: No. 23750174) is grate-
fully acknowledged.
20 H. Kim and D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130, 398.
21 Elimination of the boron group via a b-borato-radical intermediate
is a highly endothermic pathway and thereby presumed unlikely;
see: J. C. Walton, A. J. McCarroll, Q. Chen, B. Carboni and
R. Nziengui, J. Am. Chem. Soc., 2000, 122, 5455.
Notes and references
1 T. Hiyama, Organofluorine Compounds: Chemistry and Applications,
Springer, Berlin, 2000.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 2037--2039 2039