312
B. Mudryk et al.
CLUSTER
Cossy, J.; Dumas, C.; Michel, P.; Pardo, G. M. Tetrahedron
Lett. 1995, 36, 549. (c) See also: Cossy, J.; Dumas, C.;
Pardo, G. M. Synlett 1997, 905.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
(7) Thottathil, J. K.; Moniot, J. L.; Mueller, R. H.; Wong, M. K.
Y.; Kissick, T. P. J. Org. Chem. 1986, 51, 3140.
References and Notes
(8) Use of NMP produced approximately 1 LCAP of the
Friedel–Crafts-derived impurity. As a comparison, CH2Cl2,
which was the worst performer, produced ca. 12 LCAP of
the impurity.
(9) The structure of 8 was proposed based on LCMS data.
Specifically, the C–N connectivity cannot be confirmed.
(10) Loss of acetonitrile and triethylamine, which form a low-
boiling azeotrope (b.p. 55 °C), was attributed to the nitrogen
sweep used to ensure efficient inertion and prevent
formation of colored impurities. This issue was resolved
during development runs by using a nitrogen blanket, and
was not observed in the pilot plant batches.
(11) Carbon treatment after formation of 5 resulted in ca. 5% Boc
deprotection even at r.t. and, as a result, the carbon treatment
should be implemented during processing of 6 if required.
(12) For a discussion on genotoxic impurities, see: Snodin, G. J.
Regul. Toxicol. Pharmacol. 2006, 45, 79.
(1) New address: Celgene Corp., Basking Ridge, NJ, USA.
(2) New address: Dupont, Newark, DE, USA.
(3) For Bristol-Myers Squibb patents covering 1, see: (a) Wei,
C.; Norris, D. J. Crystalline forms of (3R,4R)-4-amino-1-({4-
[(3-methoxyphenyl)amino]pyrrolo[2,1-f][1,2,4]triazin-5-
yl}methyl)piperidine-3-ol; US Patent 0191375, 2007.
(b) Fink, B. E.; Gavai, A. V.; Vite, G. D.; Chen, P.;
Mastalerz, H.; Norris, D. J.; Tokarshi, J. S.; Zhao, Y.; Han,
W.-C. Preparation of pyrrolo[2,1-f][1,2,4]triazine
derivatives as HER1, HER2, HER4 kinase inhibitors and
antiproliferative agents; WO Patent 066176, 2005. (c) Fink,
B. E.; Gavai, A. V.; Vite, G. D.; Chen, P.; Mastalerz, H.;
Norris, D. J.; Tokarski, J. S.; Zhao, Y.; Han, W.-C.
Pyrrolotriazine Compounds as Kinase Inhibitors; US
Patent 7,141,571 B2, 2006.
(4) For earlier discovery work in the HER and VEGFR program,
see: (a) Borzilleri, R. M.; Cai, Z.; Ellis, C.; Fargnoli, J.; Fura,
A.; Gerhardt, B.; Goyal, B.; Hunt, J. T.; Mortillo, S.; Qian,
L.; Tokarski, J.; Vyas, V.; Barri Wautlet, B.; Zhenga, X.;
Bhidea, R. S. Bioorg. Med. Chem. Lett. 2005, 15, 1429.
(b) Fink, B. E.; Vite, G. D.; Mastalerz, H.; Kadow, J. H.;
Kim, S.-H.; Leavitt, K. J.; Du, K.; Crews, D.; Mitt, T.;
Wong, T. W.; Hunt, J. T.; Vyas, D. M.; Tokarski, J. S.
Bioorg. Med. Chem. Lett. 2005, 17, 4774. (c) Mastalerz, H.;
Chang, M.; Chen, P.; Dextraze, P.; Fink, B. E.; Gavai, A.;
Goyal, B.; Han, W.-C.; Johnson, W.; Langley, D.; Lee, F.
Y.; Marathe, P.; Mathur, A.; Oppenheimer, S.; Ruediger, E.;
Tarrant, J.; Tokarski, J. S.; Vite, G. D.; Vyas, D. M.; Wong,
H.; Wong, T. W.; Zhang, H.; Zhang, G. Bioorg. Med. Chem.
Lett. 2007, 17, 2036. (d) Mastalerz, H.; Chang, M.; Gavai,
A.; Johnson, W.; Langley, D.; Lee, F. Y.; Marathe, P.;
Mathur, A.; Oppenheimer, S.; Tarrant, J.; Tokarski, J. S.;
Vite, G. D.; Vyas, D. M.; Wong, H.; Wong, T. W.; Zhang,
H.; Zhang, G. Bioorg. Med. Chem. Lett. 2007, 17, 2828.
(e) Mastalerz, H.; Chang, M.; Chen, P.; Fink, B. E.; Gavai,
A.; Han, W.-C.; Johnson, W.; Langley, D.; Lee, F. Y.;
Leavitt, K.; Marathe, P.; Norris, D.; Oppenheimer, S.;
Sleczka, B.; Tarrant, J.; Tokarski, J. S.; Vite, G. D.; Vyas, D.
M.; Wong, H.; Wong, T. W.; Zhang, H.; Zhang, G. Bioorg.
Med. Chem. Lett. 2007, 17, 4947. (f) Cai, Z.-W.; Wei, D.;
Borzilleri, R. M.; Qian, L.; Kamath, A.; Mortillo, S.;
Wautlet, B.; Henley, B. J.; Jeyaseelan, R.; Tokarski, J.; Hunt,
J. T.; Bhide, R. S.; Fargnoli, J.; Lombardo, L. J. Bioorg.
Med. Chem. Lett. 2008, 18, 1354. (g) Gavai, A. V.; Fink, B.
E.; Fairfax, D. J.; Martin, G. S.; Rossiter, L. M.; Holst, C. L.;
Kim, S.-H.; Leavitt, K. J.; Mastalerz, H.; Han, W.-C.; Norris,
D.; Goyal, B.; Swaminathan, S.; Patel, B.; Mathur, A.; Vyas,
D. M.; Tokarski, J. S.; Yu, C.; Oppenheimer, S.; Zhang, H.;
Marathe, P.; Fargnoli, J.; Lee, F. Y.; Wong, T. W.; Vite, G.
D. J. Med. Chem. 2009, 52, 6527. (h) Fink, B. E.; Norris, D.;
Mastalerz, H.; Chen, P.; Goyal, B.; Zhao, Y.; Kim, S.-H.;
Vite, G. D.; Lee, F. Y.; Zhang, H.; Oppenheimer, S.;
Tokarski, J. S.; Wong, T. W.; Gavai, A. V. Bioorg. Med.
Chem. Lett. 2011, 21, 781.
(13) The linkage of the tert-butyl group to oxygen was confirmed
by HMBC NMR experiments.
(14) The aqueous carbonate was used in the first iteration of the
process to neutralize hydrogen bromide, a byproduct derived
from des-bromination of the brominated penultimate
derivative at the pyrrole fragment; see ref. 4. Although the
carbonate was not needed, it was retained in the revised
process to accommodate regulatory requirements and keep
the key process parameters unchanged.
(15) In general, impurities (organic, residual solvents, or
inorganic) do not add any therapeutic value, may present
toxicity concerns and are therefore controlled to very low
levels in the active pharmaceutical ingredient.
(16) Nacario, R.; Kotakonda, S.; Fouchard, D. M. D.;
Tillekeratne, L. M. V.; Hudson, R. A. Org. Lett. 2005, 7,
471.
(17) From a procedural perspective, it was noted that this
impurity continued to form after the reaction reached its
endpoint. As a result, we utilized an internal Raman probe,
rather than HPLC after a set amount of time. This allowed us
to stop the reaction when it was complete, minimizing
additional conversion of 1 into 12.
(18) It should be noted that we set a more stringent requirement
of 250 ppm m-anisidine in isolated 6 (see above) to ensure
that safe levels of this impurity would be present in the drug
substance.
(19) (a) Young, I. S.; Ortiz, A.; Sawyer, J. R.; Conlon, D. A.;
Buono, F. G.; Leung, S. W.; Burt, J. L.; Sortore, E. Org.
Process Res. Dev. 2012, 16, 1558. (b) Ortiz, A.; Young, I. S.;
Sawyer, J. R.; Hsiao, Y.; Singh, A.; Sugiyama, M.; Corbett,
R. M.; Chau, M.; Shi, Z.; Conlon, D. A. Org. Biomol. Chem.
2012, 10, 5253. (c) First generation: 7 steps, 3 isolations, 26
operations, 22% overall yield. Second generation: 5 steps, 2
isolations, 10 operations, 29% overall yield resulting in 60%
reduction in cost. Number of steps refers to number of
intermediates that could be isolated.
(20) Laduron, F.; Tamborowski, V.; Moens, L.; Horváth, A.; De
Smaele, D.; Leurs, S. Org. Process Res. Dev. 2005, 9, 102.
(21) Gil-Av, E. J. Am. Chem. Soc. 1959, 81, 1602.
(22) First generation: three steps, 62% yield, three N-alkyl
impurities. Second generation: two steps, 67% yield, no N-
alkyl impurities. Number of steps refers to number of
intermediates that could be isolated.
(5) Zheng, B.; Conlon, D. A.; Corbett, R. M.; Chau, M.; Hsieh ,
D.-M.; Yeboah, A.; Hsieh, D.; Müslehiddinoğlu, J.;
Gallagher, W. P.; Simon, J.-N.; Burt, J. Org. Process Res.
Dev. 2012, 16, 1846.
(6) (a) Langlois, N.; Calvez, O. Synth. Commun. 1998, 28, 4471.
(b) For other examples of this type of ring expansion see:
Synlett 2013, 24, 305–312
© Georg Thieme Verlag Stuttgart · New York