Communications
being (6’cis)-1 (54%).The ratio of isomers (6 ’cis)-1/1—
[1] E.Hofmann, P.M.Wrench, F.P.Sharples, R.G.Hiller, W.Welte,
K.Diederichs, Science 1996, 272, 1788 – 1791.
[2] a) D.M.Anderson, Sci. Am. 1994, 271(2), 62 – 68; b) E.Culotta,
[3] H.Nishino, Mutat. Res. 1998, 402, 159 – 163.
originating from precursors (5Z,2’’’E)-24 and E-2—was 87:13,
and the ratio of isomers (6’cis,8’Z)-1/(8’Z)-1—originating
from precursors (5Z,2’’’E)-24 and Z-2—was 82:18.These
findings agree well with recent reports on the cis selectivity of
diene- or polyene-delivering olefinations with other allyl-
(benzothiazolyl)sulfones.[38] After isomer separation by prep-
arative reversed-phase HPLC, we obtained our first specimen
of correctly configured synthetic peridinin (1).More interest-
ingly, the purified isomer (6’cis)-1, which was our major
olefination product, gave synthetic peridinin (1) selectively
upon prolonged storage of a solution in 70% aq acetonitrile at
room temperature in the dark.After 37 days we isolated 1 in
57% yield, and unchanged (6’cis)-1 was recovered in 37%
yield; this corresponds to a conversion to 1 in 89% yield.
The 1H NMR shifts and JH,H values determined at
500 MHz in a CD3OD solution of synthetic peridinin (1)
and its 13C NMR shifts recorded at 125.7 MHz agree well with
the data reported for natural peridinin (1) under identical
conditions.[39] The same is true with respect to the eight
1H NMR shift values (500 MHz) for the olefinic carbon atoms
published for natural peridinin (1) in C6D6.[40]
[4] J.A.Haugan, T.Aakermann, S.Liaaen-Jensen,
Methods Enzy-
mol. 1992, 213, 231 – 245.
[5] Carotenoids (Eds.: G. Britton, S. Liaaen-Jensen, H. Pfander),
Carotenoids—Handbook (compiled by A.Z.Mercadante, E.S.
Egeland), Birkhäuser, Basel, 2004.
[6] g-Alkylidenebutenolide rings are also present in the following
carotenoids: a) peridinol: Ref.[6c]; b) anhydroperidinol: D.J.
Repeta, R.B.Gagosien, Geochim. Cosmochim. Acta 1984, 48,
1265 – 1277; c) pyrrhoxanthin: two-dimensional structure: J.E.
Johansen, W.A.Svec, S.Liaaen-Jensen, F.T.Haxo, Phytochem-
istry 1974, 13, 2261 – 2271; three-dimensional structure: T.
Aakermann, S.Liaaen-Jensen, Phytochemistry 1992, 31, 1779 –
1782; d) pyrrhoxanthinol: Ref.[6c]; e) hydratopyrrhoxanthinol:
S.Hertzberg, V.Partali, S.Liaaen-Jensen,
Acta Chem. Scand.
Ser. B 1988, 42, 495 – 503; f) uriolide: P.Foss, R.R.L.Guillard, S.
Liaaen-Jensen, Phytochemistry 1986, 25, 119 – 124; g) deepox-
yuriolide: E.S.Egeland, S.Liaaen-Jensen, Phytochemistry 1995,
40, 515 – 520; h) anhydrouriolide: Ref.[6g]; i) 3 ’-dehydrourio-
lide: Ref.[6g]; j) unnamed carotenoid: T.Maoka, K.Hashimoto,
We also undertook an intensive NMR study of isomer 1
possessing the natural configuration and of its precursor
(6’cis)-1 exhibiting the unnatural configuration of the
N.Akimoto, Y.Fuhiwara,
J. Nat. Prod. 2001, 64, 578 – 581;
k) unnamed carotenoid: M.Suzuki, K.Watanabe, S.Fujiwara, T.
Kurasawa, T.Wakabayashi, M.Tsuzuki, K.Iguchi, T.Yamori,
Chem. Pharm. Bull. 2003, 724 – 727.
6’
7’ [18]
=
C
C
bond.We used C 6D6 solutions because in this
solvent the signal (1H) dispersion was greater than in the
previously used[39] CD3OD, and we were able to assign all 1H
and 13C resonances individually.The ROESY spectra of 1 and
(6’cis)-1 proved the two stereostructures based on appropriate
nOe crosspeaks.Specifically, the configurations of the double
bonds were assigned in this manner, the relative configura-
tions of the stereocenters established, and even the 3D
structure of the allene moiety elucidated.
[7] a) I.E. Swift, B.V. Milborrow, Biochem. J. 1981, 199, 69 – 74;
b) I.E.Swift, B.V.Milborrow, Biochem. J. 2005, 389, 919 – 919
(retraction of prior findings).
[8] F.Schütt, Ber. Dtsch. Bot. Ges. 1890, 8, 9 – 32.
[9] Two-dimensional structure: a) H.H. Strain, W.A. Svec, K.
Aitzetmüller, M.C.Grandolfo, J.J.Katz, H.Kjøsen, S.Norgård,
S.Liaaen-Jensen, F.T.Haxo, P.Wegfahrt, H.Rapoport,
Chem. Soc. 1971, 93, 1823 – 1825; three-dimensional structure:
b) HH. .Strain, WA. .Svec, P.Wegfahrt, H.Rapoport, FT. .
Haxo, S.Norgård, H.Kjøsen, S.Liaaen-Jensen,
J. Am.
Acta Chem.
In summary, we have accomplished a highly convergent
total synthesis of peridinin (1).Starting from actinol ( 5) and
diethyl tartrate (6), 1 was synthesized in 15 steps plus two
HPLC separations in the longest linear sequence.A single
HPLC separaration may have sufficed if the isomerization
(6’cis)-1!1 had been effected with the originally obtained
(6’cis)-1/1/(6’cis,8’Z)-1/(8’Z)-1 mixture rather than with pure
(6’cis)-1.The overall yield was 77. % and the total number of
steps[41] 29.[42] Key transformations were the differential
reduction 7!8 of an ester-containing Weinreb amide, the E-
selective olefination 8!10 by the Ando-type bromophosph-
onates 9a/9b, the anti-selective b-elimination 11!12 upon
treatment with 1,1’-thiocarbonyldiimidazole, which estab-
Scand. Ser. B 1976, 30, 109 – 120; c) J.E.Johansen, G.Borch, S.
Liaaen-Jensen, Phytochemistry 1980, 19, 441 – 444.
[10] a) Synthesis of a racemic mixture of diastereomers of 1: M.Ito,
Y.Hirata, Y.Shibata, K.Tsukida, J. Chem. Soc. Perkin Trans. 1
1990, 197 – 199; b) synthesis of enantiomerically and diastereo-
merically pure 1: Y.Yamano, M.Ito, J. Chem. Soc. Perkin Trans.
1 1993, 1599 – 1610.
[11] a) N.Furuichi, H.Hara, T.Osaki, H.Mori, S.Katsumura,
Angew. Chem. 2002, 114, 1065 – 1068; Angew. Chem. Int. Ed.
2002, 41, 1023 – 1026; b) N.Furuichi, H.Hara, T.Osaki, M.
Takano, H.Mori, S.Katsumura, J. Org. Chem. 2004, 69, 7949 –
7959.
[12] B.Vaz, R.Alvarez, R.Brückner, A.R.de Lera,
Org. Lett. 2005,
7, 545 – 548.
1’
5
=
lished the C
C bond Z-selectively in an unprecedented
[13] a) Review: R.Brückner, Chem. Commun. 2001, 141 – 152;
individual reports: b) J.Schmidt-Leithoff, R.Brückner, Helv.
Chim. Acta 2005, 88, 1943 – 1958; c) F.von der Ohe, R.Brück-
ner, New J. Chem. 2000, 24, 659 – 669; d) I.Hanisch, R.
Brückner, Synlett 2000, 374 – 378; e) K.Siegel, R.Brückner,
Chem. Eur. J. 1998, 4, 1116 – 1122; f) F.C.Görth, A.Umland, R.
Brückner, Eur. J. Org. Chem. 1998, 1055 – 1062.
manner, and the cis!trans isomerization (6’cis)-1!1 as the
ultimate step.
Received: February 7, 2006
Published online: May 9, 2006
[14] Reviews on other approaches to g-alkylidenebutenolides:
a) E.-i. Negishi, M. Kotora, Tetrahedron 1997, 53, 6707 – 6738;
b) R.Brückner, Curr. Org. Chem. 2001, 5, 679 – 718; c) R.Rossi,
F.Bellina in Targets in Heterocyclic Systems: Chemistry and
Properties, Vol. 5 (Eds.: O. A. Attanasi, D. Spinelli), Società
Chimica Italiana, 2002, pp.169 – 198.
Keywords: butenolides · carotenoids · elimination · olefination ·
total synthesis
.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4023 –4027