Communication
Organic & Biomolecular Chemistry
2 (a) S. Yoshida and A. S. Hay, Macromolecules, 1995, 28,
2579; (b) Y. Z. Meng, A. S. Hay, X. G. Jian and S. C. Tjong,
J. Appl. Polym. Sci., 1997, 66, 1425; (c) S. J. Wang,
Y. Z. Meng, A. R. Hlil and A. S. Hay, Macromolecules, 2004,
37, 60.
3 For recent reviews, see: (a) T.-S. Mei, L. Kou, S. Ma,
K. M. Engle and J.-Q. Yu, Synthesis, 2012, 1778;
(b) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman,
Acc. Chem. Res., 2012, 45, 814; (c) J. Wencel-Delord,
T. Dröge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40,
4740; (d) B. J. Stokes and T. G. Driver, Eur. J. Org. Chem.,
2011, 4071; (e) E. Clot, O. Eisenstein, N. Jasim,
S. A. Macgregor, J. McGrady and R. N. Perutz, Acc. Chem.
Res., 2011, 44, 333; (f) H. Li, B.-J. Li and Z.-J. Shi, Catal. Sci.
Technol., 2011, 1, 191; (g) W. R. Gutekunst and P. S. Baran,
Chem. Soc. Rev., 2011, 40, 1976; (h) S.-Y. Zhang, F.-M. Zhang
and Y.-Q. Tu, Chem. Soc. Rev., 2011, 40, 1937;
(i) T. C. Boorman and I. Larrosa, Chem. Soc. Rev., 2011, 40,
1910; ( j) L. McMurray, F. O’Hara and M. J. Gaunt, Chem.
Soc. Rev., 2011, 40, 1885; (k) L. Ackermann, Chem. Rev.,
2011, 111, 1315; (l) K. Hirano and M. Miura, Synlett, 2011,
294; (m) E. M. Beccalli, G. Broggini, A. Fasana and
M. Rigamonti, J. Organomet. Chem., 2011, 696, 277;
(n) S. Messaoudi, J.-D. Brion and M. Alami, Eur. J. Org.
Chem., 2010, 6495; (o) D. Lapointe and K. Fagnou, Chem.
Lett., 2010, 39, 1118; (p) R. Jazzar, J. Hitce, A. Renaudat,
J. Sofack-Kreutzer and O. Baudoin, Chem.–Eur. J., 2010, 16,
2654; (q) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147; (r) D. Balcells, E. Clot and O. Eisenstein, Chem.
Rev., 2010, 110, 749; (s) A. A. Kulkarni and O. Daugulis, Syn-
thesis, 2009, 4087; (t) M. Zhang, Adv. Synth. Catal., 2009,
351, 2243; (u) G. P. McGlacken and L. M. Bateman, Chem.
Soc. Rev., 2009, 38, 2447; (v) P. Thansandote and
M. Lautens, Chem.–Eur. J., 2009, 15, 5874; (w) M. Catellani,
E. Motti and N. Della Ca’, Acc. Chem. Res., 2008, 41, 1512;
(x) F. Kakiuchi and T. Kochi, Synthesis, 2008, 3013;
(y) Y. J. Park, J.-W. Park and C.-H. Jun, Acc. Chem. Res.,
2008, 41, 222.
4 For reviews, see: (a) C. Liu, H. Zhang, W. Shi and A. Lei,
Chem. Rev., 2011, 111, 1780; (b) C. S. Yeung and
V. M. Dong, Chem. Rev., 2011, 111, 1215; (c) S. H. Cho,
J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40,
5068; (d) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540;
(e) C.-J. Li, Acc. Chem. Res., 2009, 42, 335.
5 (a) P. Gandeepan, C.-H. Hung and C.-H. Cheng, Chem.
Commun., 2012, 48, 9379; (b) L. Huet, R. Forke, A. Jäger and
H.-J. Knölker, Synlett, 2012, 1230; (c) N. Ishida,
Y. Nakanishi, T. Moriya and M. Murakami, Chem. Lett.,
2011, 40, 1047; (d) C. Li, Y. Zhang, P. Li and L. Wang,
J. Org. Chem., 2011, 76, 4692; (e) P. Gandeepan,
K. Parthasarathy and C.-H. Cheng, J. Am. Chem. Soc., 2010,
132, 8569; (f) B. Liégault and K. Fagnou, Organometallics,
2008, 27, 4841; (g) B. Liégault, D. Lee, M. P. Huestis,
D. R. Stuart and K. Fagnou, J. Org. Chem., 2008, 73, 5022;
(h) T. Watanabe, S. Ueda, S. Inuki, S. Oishi, N. Fujii and
H. Ohno, Chem. Commun., 2007, 4516; (i) T. A. Dwight,
Fig. 1 Unreactive substrates.
Scheme 3 Synthesis of 4-substituted phthalazinones via Heck-type cyclisation.
(entry 10), whereas the 1-naphthyl counterpart gave a complex
mixture of products. The reaction with hydrazine 1l, which
lacked a carbonyl group, failed to afford the corresponding six-
membered product, showing that the reaction is only appli-
cable to hydrazide substrates (entry 11).
The effect of varying the substituents on the nitrogen atoms
was also examined. Unfortunately, neither N-phenyl- or
N-t-butyl hydrazides, nor N′-benzylidene- or N′-ethylidene
hydrazides participated in the cyclisation under the present
reaction conditions (Fig. 1).
To overcome issues arising from the narrow substrate
scope, the Heck-type cyclisation of 2-iodobenzohydrazides 3
was attempted for the synthesis of 4-substituted phthal-
azinones (Scheme 3). In the presence of 20 mol% Pd(OAc)2
and 1 equiv. of AcOK at 130 °C in DMF, 2-iodo-N-methyl-
N′-methylenebenzohydrazide 3a was converted into 2a (R = H)
in 61% yield. The Heck-type cyclisation was applicable to
N′-benzylidene- and N′-ethylidene hydrazides (3m and 3n,
respectively), affording the corresponding 4-phenyl- and
4-methylphthalazinones (2m and 2n, respectively), which were
inaccessible via the oxidative C–H/C–H cross-coupling.
In summary, phthalazin-1(2H)-ones were catalytically syn-
thesised by intramolecular oxidative C–H/C–H cross-coupling
using readily accessible N′-methylenebenzhydrazides 1 and a
catalyst system (Pd(OAc)2, BQ and acetic acid). The mechanism
of the Pd(II)-catalysed cyclisation of 1 was accounted for by the
relatively uncommon Heck-type cyclisation reactions of
carbon–nitrogen double bonds.
Notes and references
1 (a) P. Kolar and M. Tišler, Adv. Heterocycl. Chem., 1999, 75,
167; (b) B. U. W. Maes and G. L. F. Lemière, Comprehensive
Heterocyclic Chemistry III, ed. A. R. Katritzky,
C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor and
A. Aitken, Elsevier, Oxford, 2008, vol. 8, pp. 1–116.
2086 | Org. Biomol. Chem., 2013, 11, 2084–2087
This journal is © The Royal Society of Chemistry 2013