Organic Letters
Letter
(3) (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.
(b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633. (c) Hlasta, D. J.;
Ackerman, J. H. J. Org. Chem. 1994, 59, 6184.
environments, which were also excellent solvents for this
conversion. The desired triazoles were afforded in good yields
and excellent regioselectivities, indicating that the reaction could
be carried out under both extra- and intracellular environments
(Table 2, entries 5, 6). Serum was most commonly used to mimic
the blood to provide an in vivo biological condition. Expectedly,
the reaction could also work perfectly in 50% normal mouse
serum and 100% lung cancer patient serum (Table 2, entries 7, 8).
The excellent yields and regioselectivities of the Ir-catalyzed
cycloaddition under various bioorthogonal conditions exhibited
significant potential for further applications.
In summary, we have developed iridium-catalyzed azide−
ynamide cycloaddition for the synthesis of 5-amido-fully
substituted 1,2,3-triazoles under mild, air, aqueous, and
bioorthogonal conditions. This strategy shows broad substrate
scope, high yields, and excellent regioselectivities. It switches the
intrinsic regioselectivities for CuAAC and improves the initial
regioselectivities for RuAAC to afford 5-amido fully substituted
1,2,3-triazoles exclusively. The iridium ion is low in cytotoxicity
and insensitive to oxygen/water, determining its biocompatibility
and potential clinical applications. The comprehensive mecha-
nistic studies and advanced theoretical calculations for the
catalysts and intermediates are underway in our laboratory.
(4) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057. (c) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. For CuAAC
reviews:(d)Wu,P.;Fokin, V.V. AldrichimicaActa2007,40,7.(e)Moses,
J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. (f) Meldal, M.;
Tornøe, C. W. Chem. Rev. 2008, 108, 2952. (g) Hein, J. E.; Fokin, V. V.
Chem. Soc. Rev. 2010, 39, 1302.
(5) (a) Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G.
Bioconjugate Chem. 2010, 21, 1912. (b) Kennedy, D. C.; McKay, C. S.;
Legault, M. C. B.; Danielson, D. C.; Blake, J. A.; Pegoraro, A. F.; Stolow,
A.; Mester, Z.; Pezacki, J. P. J. Am. Chem. Soc. 2011, 133, 17993.
(6) (a) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666.
(b) Devaraj, N. K.; Weissleder, R. Acc. Chem. Res. 2011, 44, 816. (c) Lim,
R. K. V.;Lin, Q. Acc. Chem. Res. 2011, 44, 828. (d) Lallana, E.;Riguera, R.;
Fernandez-Megia, E. Angew. Chem., Int. Ed. 2011, 50, 8794. (e) Jewett, J.
C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
(7) For reviews about ynamides, see: (a) Wang, X.-N.; He, S.-Z.; Fang,
L.; Yeom, H.-S.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47,
560. (b) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang,
Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
(8) (a) Zhang, X.; Hsung, R. P.; You, L. Org. Biomol. Chem. 2006, 4,
2679. (b) Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. Adv. Synth.
Catal. 2006, 348, 2437.
ASSOCIATED CONTENT
■
(9) (a) Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin,
V. V. Angew. Chem., Int. Ed. 2009, 48, 8018. (b) Worrell, B. T.; Hein, J. E.;
Fokin, V. V. Angew. Chem., Int. Ed. 2012, 51, 11791.
(10) (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
(b) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin,
Z.;Jia, G.;Fokin, V. V. J. Am. Chem. Soc. 2008,130,8923. (c)Johansson, J.
R.; Beke-Somfai, T.; Stalsmeden, A. S.; Kann, N. Chem. Rev. 2016, 116,
S
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
Detailed experimental procedures and characterization of
new compounds (1H NMR, 13C NMR, HRMS) (PDF)
14726. (d) Destito, P.; Couceiro, J. R.; Faustino, H.; Lop
́
ez, F.;
AUTHOR INFORMATION
Mascarenas, J. L. Angew. Chem., Int. Ed. 2017, 56, 10766.
̃
■
(11) (a) Kim, W. G.; Kang, M. E.; Lee, J. B.; Jeon, M. H.; Lee, S.; Lee, J.;
Choi, B.; Cal, P. M. S. D.; Kang, S.; Kee, J.-M.; Bernardes, G. J. L.; Rohde,
J.-U.; Choe, W.; Hong, S. Y. J. Am. Chem. Soc. 2017, 139, 12121. (b) Liao,
Y.; Lu, Q.; Chen, G.; Yu, Y.; Li, C.; Huang, X. ACS Catal. 2017, 7, 7529.
(12) (a) Ding, S.; Jia, G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877.
(b) Luo, Q.; Jia, G.; Sun, J.; Lin, Z. J. Org. Chem. 2014, 79, 11970.
(c) Rasolofonjatovo, E.; Theeramunkong, S.; Bouriaud, A.; Kolodych, S.;
Chaumontet, M.; Taran, F. Org. Lett. 2013, 15, 4698.
(13) Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.-Y.; Astruc, D. Coord.
Chem. Rev. 2016, 316, 1.
(14) (a) Simpson, P. V.; Schmidt, C.; Ott, I.; Bruhn, H.;
Schatzschneider, U. Eur. J. Inorg. Chem. 2013, 2013, 5547. (b) Gothe,
Y.; Marzo, T.; Messori, L.; Metzler-Nolte, N. Chem. - Eur. J. 2016, 22,
12487. (c) Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.;
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by grants from the Fundamental
Research Funds for the Central Universities (No. DUT16RC(3)
070), China Postdoctoral Science Foundation (No.
2017M611216), and National Natural Science Foundation of
China (Nos. 21702025, 51703018). We thank Prof. Qing Wang,
Prof. Yong Luo, and Prof. Gray Guishan Xiao inDalian University
of Technology for generously providing biological samples.
Marzano, C. Chem. Rev. 2014, 114, 815. (d) Suss-Fink, G. Dalton Trans.
̈
2010, 39, 1673.
(15) (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.;
Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003,
125, 2368. (b) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.;
Vera, E. L. Org. Lett. 2004, 6, 1151. (c) Tracey, M. R.; Zhang, Y.;
Frederick, M. O.; Mulder, J. A.; Hsung, R. P. Org. Lett. 2004, 6, 2209.
(16) For the crystal structure of the Ir(III)−azide complex, see:
REFERENCES
■
(1) For recent examples: (a) Worrell, B. T.; Malik, J. A.; Fokin, V. V.
Science2013,340, 457. (b)Worrell, B. T.;Ellery, S. P.;Fokin, V. V. Angew.
Chem., Int. Ed. 2013, 52, 13037. (c) Yamamoto, K.; Bruun, T.; Kim, J. Y.;
Zhang, L.; Lautens, M. Org. Lett. 2016, 18, 2644.
Albertin, G.;Antoniutti, S.;Baldan, D.;Castro, J.;García-Fontan
́
, S. Inorg.
Chem. 2008, 47, 742.
(17) (a) Li, X.; Li, H.; Song, W.; Tseng, P.-S.; Liu, L.; Guzei, I. A.; Tang,
W. Angew. Chem., Int. Ed. 2015, 54, 12905. (b) Song, W.; Li, X.; Yang, K.;
Zhao, X.-L.; Glazier, D. A.; Xi, B.-m.; Tang, W. J. Org. Chem. 2016, 81,
2930.
(2) (a) Ferrini, S.; Chandanshive, J. Z.; Lena, S.; Franchini, M. C.;
Giannini, G.; Tafi, A.; Taddei, M. J. Org. Chem. 2015, 80, 2562. (b) Qian,
Y.; Hamilton, M.; Sidduri, A.; Gabriel, S.; Ren, Y.; Peng, R.; Kondru, R.;
Narayanan, A.; Truitt, T.; Hamid, R.; Chen, Y.; Zhang, L.; Fretland, A. J.;
Sanchez, R. A.; Chang, K.-C.; Lucas, M.; Schoenfeld, R. C.; Laine, D.;
Fuentes, M. E.; Stevenson, C. S.; Budd, D. C. J. Med. Chem. 2012, 55,
7920.
D
Org. Lett. XXXX, XXX, XXX−XXX