P. Datta et al. / Polyhedron 53 (2013) 193–201
[5] A. Hagfeldt, M. Graetzel, Chem. Rev. 95 (1995) 49.
201
The redox properties of the complexes can be explained on the
basis of DFT calculations. Oxidation involves electron abstraction
from occupied MOs and reduction involves electron addition to
unoccupied MOs. Since the HOMO of the complexes has a metal
contribution, 10–55%, oxidation can be regarded as oxidation of
the metal center, Ru(II) ? Ru(III) and Ru(III) ? Ru(IV). Again the
observed trend in the oxidation potential for each type of comple
[6] I. Ortmans, C. Moucheron, A.K. De Mesmaeker, Coord. Chem. Rev. 168 (1998)
233.
[7] K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrine
Complexes, Academic, London, 1992.
[8] K. Kalyanasundaram, M. Gratzel (Eds.), Photosensitization and Photocatalysis
using Inorganic and Organometallic Compounds, Kluwer Academic Publishers,
Dordrecht, 1993.
[9] A. Sharmin, R.C. Darlington, K.I. Hardcastle, M. Ravera, E. Rosenberg, J.B.
Alexander Ross, J. Organomet. Chem. 694 (2009) 988.
[10] M.T. Indelli, F. Scandola, J.-P. Collin, J.-P. Sauvage, A. Sour, Inorg. Chem. 35
(1996) 303.
[11] D. Oyama, A. Asuma, T. Hamada, T. Takase, Inorg. Chim. Acta 362 (2009) 2581.
[12] M.-N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, J. Chem. Soc., Chem.
Commun. (1994) 189.
[13] M. Shivakumar, K. Pramanik, P. Ghosh, A. Chakravorty, Inorg. Chem. 37 (1998)
5968.
[14] M. Shivakumar, K. Pramanik, P. Ghosh, A. Chakravorty, Chem. Commun. (1998)
2103.
[15] M. Shivakumar, K. Pramanik, I. Bhattacharyya, A. Chakravorty, Inorg. Chem. 39
(2000) 4332.
(Eox: (3a) > (3b) > (3c) and (4a) > (4b) > (4c)) correlates well
with the energy of the HOMO (EHOMO: (3a) < (3b) < (3c) and
(4a) < (4b) < (4c)) (Table 6). Although the ligand orbitals also con-
tribute significantly in the HOMO, the component does not have
electrons to be extracted. On the other hand, the ligand contributes
95% to constitute the LUMO and thus the reduction may be re-
ferred as electron accommodation in the p⁄ orbitals of the azoim-
ine group. The HOMO–LUMO energy gap (Fig. 7) has also been well
correlated with the difference between the first oxidation (refers to
the energy of the HOMO) and first reduction (refers to the energy
of the LUMO) potentials.
[16] T.K. Mondal, S.K. Sarker, P. Raghavaiah, C. Sinha, Polyhedron 27 (2008) 3020.
[17] T.K. Mondal, J. Dinda, J. Cheng, T.-H. Lu, C. Sinha, Inorg. Chim. Acta 361 (2008)
2431.
[18] R.L. Atkins, D.E.J. Bliss, J. Org. Chem. 43 (1978) 1975.
[19] E.J. Schimitschek, J.A. Trias, P.R. Hammond, R.A. Henry, R.L. Atkins, Opt.
Commun. 16 (1976) 313.
4. Conclusion
[20] J.A. Halstead, R.R. Reeves, Opt. Commun. 27 (1978) 273.
[21] G.A. Reynolds, K.H. Drexhage, Opt. Commun. 13 (1975) 222.
[22] A.N. Fletcher, Appl. Phys. 14 (1977) 295.
[23] G. Jones II, W.R. Jackson, S. Kanoktanaporn, Opt. Commun. 33 (1980) 315.
[24] G. Jones II, W.R. Jackson, A.M. Halpern, Chem. Phys. Lett. 72 (1980) 391.
[25] B. Schade, V. Hagen, R. Schmidt, R. Herbrich, E. Krause, T. Eckardt, J. Bendig, J.
Org. Chem. 64 (1999) 9109.
[26] S. Nad, H. Pal, J. Phys. Chem. A 105 (7) (2001) 1097.
[27] R. Sabou, W.F. Hoelderich, D. Ramprasad, R. Weinand, J. Catal. 232 (2005) 34.
[28] J. Preat, D. Jacquemin, E.A. Perpete, Chem. Phys. Lett. 415 (2005) 20.
[29] H. Yu, H. Mizufune, K. Uenaka, T. Moritoki, H. Koshima, Tetrahedron 61 (2005)
8932.
[30] O.D. Kachkovski, O.I. Tolmachev, L.O. Kobryn, E.E. Bila, M.I. Ganushchak, Dyes
Pigm. 63 (2004) 203.
[31] A.K. Singh, P. Kumar, M. Yadav, D.S. Pandey, J. Organomet. Chem. 695 (2010)
567.
[32] S. Jasimuddin, Transition Met. Chem. 31 (2006) 724.
[33] F.N. Castellano, J.D. Dattelbaum, J.R. Lakowicz, Anal. Biochem. 255 (1998) 165.
[34] H. Wolpher, O. Johansson, M. Abrahamson, M. Kritikos, L. Sun, B. Akermark,
Inorg. Chem. Commun. 7 (2004) 337.
Ruthenium complexes containing two types of coumarinyl-
azoimidazole ligands have been synthesized and characterized by
analytical and spectroscopic (Mass, 1H NMR, IR and UV–Vis) data.
The 2-(coumarinyl-6-azo)-4-imidazole ligands bonded to ruthe-
nium in the monoionic bis-chelated [RuH(CO)(PPh3)2(4-R-L)] (3)
mode and 4-(coumarinyl-6-azo)imidazole ligands in the neutral
bis-chelated [RuH(CO)(PPh3)2(5-R-LH)]Cl (4) mode. A single crystal
X-ray diffraction study of one of the complexes confirms the struc-
ture in one case. The complexes are redox active and upon excita-
tion in the MLCT region exhibit emission at room temperature. A
TDDFT study shows multiple charge transfer transitions in the vis-
ible and UV region.
Acknowledgements
Financial support from the Council of Scientific and Industrial
Research, and Department of Science & Technology, New Delhi
are gratefully acknowledged. We are thankful to DST-PURSE for
partial funding of this work.
[35] G. Suss-Fink, G.F. Schmidt, J. Mol. Catal. 42 (1987) 361.
[36] N. Ahmad, J.J. Levison, S.D. Robinson, M.F. Uttley, Inorg. Synth. 15 (1974) 45.
[37] P. Datta, D. Sardar, P. Mitra, C. Sinha, Polyhedron 30 (2011) 1516.
[38] P. Datta, C. Sinha, Polyhedron 26 (2007) 2433.
[39] M. Fischer, J. Georges, Chem. Phys. Lett. 260 (1996) 115.
[40] G.M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structure,
University of Gottingen, Germany, 1990.
Appendix A. Supplementary material
[41] G.M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structure,
University of Gottingen, Germany, 1997.
CCDC 855760 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be found, in
[42] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson M.A. Robb, J.R.
Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A.
Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov,
A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong,
J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J.
Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople,
GAUSSIAN98, Gaussian, Inc., Pittsburgh, PA, 1998.
[43] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[44] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[46] T.K. Mondal, J. Dinda, M. Alexandra, Z. Slawin, J. Derek Woollins, C. Sinha,
Polyhedron 26 (2007) 600.
[47] J. Otsuki, K. Suwa, K. Narutaki, C. Sinha, I. Yoshikawa, K. Araki, J. Phys. Chem. A
109 (2005) 8064.
[48] F.A. Cotton, A.H. Reid, D.A. Tocher, Synth. React. Inorg. Met. Org. Chem. 15
(1985) 637.
[49] T.K. Misra, Transition metal chemistry of 2-(arylazo) imidazole: synthesis,
characterisation and electrochemical studies, Ph.D. Thesis, Burdwan
University, India, 1999.
References
[1] M. Haukka, J. Kiviaho, M. Ahlgrh, T.A. Pakkanen, Organometallics 14 (1995)
825.
[2] C.M. Kepert, G.B. Deacon, N. Sahely, L. Spiccia, G.D. Fallon, B.W. Skelton, A.H.
White, Inorg. Chem. 43 (2004) 2818.
[3] G.B. Deacon, J.M. Patrick, B.W. Skelton, N.C. Thomas, A.H. White, Aust. J. Chem.
37 (1984) 929.
[4] P. Homanen, M. Haukka, M. Ahlgren, T.A. Pakkanen, P.N.W. Baxter, R.E.
Benfield, J.A. Connor, J. Organomet. Chem. 552 (1998) 205.