ACS Medicinal Chemistry Letters
Letter
Pellicciari, R.; Auwerx, J.; Schoonjans, K. TGR5-mediated bile acid
sensing controls glucose homeostasis. Cell Metab. 2009, 10, 167−177.
(11) Watanabe, M.; Houten, S. M.; Mataki, C.; Christoffolete, M. A.;
Kim, B. W.; Sato, H.; Messaddeq, N.; Harney, J. W.; Ezaki, O.;
Kodama, T.; Schoonjans, K.; Bianco, A. C.; Auwerx, J. Bile acids
induce energy expenditure by promoting intracellular thyroid hormone
activation. Nature 2006, 439, 484−489.
(GPBAR1, TGR5) Agonists Reduce the Production of Proinflamma-
tory Cytokines and Stabilize the Alternative Macrophage Phenotype. J.
Med. Chem. 2014, 57, 10343−10354.
(22) Duan, H.; Ning, M.; Zou, Q.; Ye, Y.; Feng, Y.; Zhang, L.; Leng,
Y.; Shen, J. Discovery of Intestinal Targeted TGR5 Agonists for the
Treatment of Type 2 Diabetes. J. Med. Chem. 2015, 58, 3315−3328.
(23) Macchiarulo, A.; Gioiello, A.; Thomas, C.; Massarotti, A.; Nuti,
R.; Rosatelli, E.; Sabbatini, P.; Schoonjans, K.; Auwerx, J.; Pellicciari, R.
Molecular field analysis and 3D-quantitative structure-activity relation-
ship study (MFA 3D-QSAR) unveil novel features of bile acid
recognition at TGR5. J. Chem. Inf. Model. 2008, 48, 1792−801.
(24) Macchiarulo, A.; Gioiello, A.; Thomas, C.; Pols, T. W. H.; Nuti,
(12) Gioiello, A.; Rosatelli, E.; Nuti, R.; Macchiarulo, A.; Pellicciari,
R. Patented TGR5 modulators: A review (2006−present). Expert
Opin. Ther. Pat. 2012, 22, 1399−1414.
(13) Pellicciari, R.; Gioiello, A.; Macchiarulo, A.; Thomas, C.;
Rosatelli, E.; Natalini, B.; Sardella, R.; Pruzanski, M.; Roda, A.;
Pastorini, E.; Schoonjans, K.; Auwerx, J. Discovery of 6α-Ethyl-23(S)-
methylcholic Acid (S-EMCA, INT-777) as a Potent and Selective
Agonist for the TGR5 Receptor, a Novel Target for Diabesity. J. Med.
Chem. 2009, 52, 7958−7961.
(14) Evans, K. A.; Budzik, B. W.; Ross, S. A.; Wisnoski, D. D.; Jin, J.;
Rivero, R. A.; Vimal, M.; Szewczyk, G. R.; Jayawickreme, C.; Moncol,
D. L.; Rimele, T. J.; Armour, S. L.; Weaver, S. P.; Griffin, R. J.;
Tadepalli, S. M.; Jeune, M. R.; Shearer, T. W.; Chen, Z. B.; Chen, L.;
Anderson, D. L.; Becherer, J. D.; De Los Frailes, M.; Colilla, F. J.
Discovery of 3-aryl-4-isoxazolecarboxamides as TGR5 receptor
agonists. J. Med. Chem. 2009, 52, 7962−7965.
(15) Herbert, M. R.; Siegel, D. L.; Staszewski, L.; Cayanan, C.;
Banerjee, U.; Dhamija, S.; Anderson, J.; Fan, A.; Wang, L.; Rix, P.;
Shiau, A. K.; Rao, T. S.; Noble, S. A.; Heyman, R. A.; Bischoff, E.;
Guha, M.; Kabakibi, A.; Pinkerton, A. B. Synthesis and SAR of 2-aryl-
3-aminomethylquinolines as agonists of the bile acid receptor TGR5.
Bioorg. Med. Chem. Lett. 2010, 20, 5718−5721.
(16) Budzik, B. W.; Evans, K. A.; Wisnoski, D. D.; Jin, J.; Rivero, R.
A.; Szewczyk, G. R.; Jayawickreme, C.; Moncol, D. L.; Yu, H. Synthesis
and structure−activity relationships of a series of 3-aryl-4-isoxazole-
carboxamides as a new class of TGR5 agonists. Bioorg. Med. Chem. Lett.
2010, 20, 1363−1367.
̀
R.; Ferrari, C.; Giacche, N.; De Franco, F.; Pruzanski, M.; Auwerx, J.;
Schoonjans, K.; Pellicciari, R. Probing the Binding Site of Bile Acids in
TGR5. ACS Med. Chem. Lett. 2013, 4, 1158−1162.
(25) Winterfeldt, E. Applications of diisobutylaluminium hydride
(DIBAH) and triisobutylaluminium (TIBA) as reducing agents in
organic synthesis. Synthesis 1975, 1975, 617−630.
(26) Agarwal, S.; Jain, M. R.; Patel, P. R. 2-Thio-Imidazole
Derivatives as TGR5Modulators. PCT Int. Appl. WO 2013/054338,
18 April 2013 (Appl. PCT/IN2012/000471, 4.07.2012).
(27) Wang, Y.-D.; Chen, W.-D.; Yu, D.; Forman, B. M.; Huang, W.
The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively
regulates hepatic inflammatory response through antagonizing nuclear
factor kappa light-chain enhancer of activated B cells (NF-κB) in mice.
Hepatology 2011, 54, 1421−1432.
(28) Schmidt, S.; Gonzalez, D.; Derendorf, H. Significance of protein
binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci.
2010, 99, 1107−1122.
(29) Bell, R. H.; Hye, R. J. Animal models of diabetes mellitus:
physiology and pathology. J. Surg. Res. 1983, 35, 433−460.
(30) Shafrir, E. Animal models of non insulin dependent diabetes.
Diabetes/Metab. Rev. 1992, 8, 179−208.
(17) Futatsugi, K.; Bahnck, K. B.; Brenner, M. B.; Buxton, J.; Chin, J.
E.; Coffey, S. B.; Dubins, J.; Flynn, D.; Gautreau, D.; Guzman-Perez,
A.; Hadcock, J. R.; Hepworth, D.; Herr, M.; Hinchey, T.; Janssen, A.
M.; Jennings, S. M.; Jiao, W.; Lavergne, S. Y.; Li, B.; Li, M.; Munchhof,
M. J.; Orr, S. T. M.; Piotrowski, D. W.; Roush, N. S.; Sammons, M.;
Stevens, B. D.; Storer, G.; Wang, J.; Warmus, J. S.; Wei, L.; Wolford, A.
C. Optimization of triazole-based TGR5 agonists towards orally
available agents. MedChemComm 2013, 4, 205−210.
(18) Piotrowski, D. W.; Futatsugi, K.; Warmus, J. S.; Orr, S. T. M.;
Freeman-Cook, K. D.; Londregan, A. T.; Wei, L.; Jennings, S.; Herr,
M.; Coffey, S. B.; Jiao, W.; Storer, G.; Hepworth, D.; Wang, J.;
Lavergne, S. Y.; Chin, J. E.; Hadcock, J. R.; Brenner, M. B.; Wolford, A.
C.; Janssen, A. M.; Roush, N. S.; Buxton, J.; Hinchey, T.; Kalgutkar, A.
M.; Sharma, R.; Flynn, D. A. Identification of Tetrahydropyrido[4,3-
d]pyrimidine Amides as a New Class of Orally Bioavailable TGR5
Agonists. ACS Med. Chem. Lett. 2013, 4, 63−68.
(19) Phillips, D. P.; Gao, W.; Yang, Y.; Zhang, G.; Lerario, I. K.; Lau,
T. L.; Jiang, J.; Wang, X.; Nguyen, D. G.; Bhat, B. G.; Trotter, C.;
Sullivan, H.; Welzel, G.; Landry, J.; Chen, Y.; Joseph, S. B.; Li, C.;
Gordon, W. P.; Richmond, W.; Johnson, K.; Bretz, A.; Bursulaya, B.;
Pan, S.; McNamara, P.; Seidel, H. M. Discovery of trifluoromethyl-
(pyrimidin-2-yl)azetidine-2-carboxamides as potent, orally bioavailable
TGR5 (GPBAR1) agonists: Structure−activity relationships, lead
optimization, and chronic in vivo efficacy. J. Med. Chem. 2014, 57,
3263.
(20) Fryer, R. M.; Ng, K. J.; Nodop Mazurek, S. G.; Patnaude, L.;
Skow, D. J.; Muthukumarana, A.; Gilpin, K. E.; Dinallo, R. M.;
Kuzmich, D.; Lord, J.; Sanyal, S.; Yu, H.; Harcken, C.; Cerny, M. A.;
Hickey, E. R.; Modis, L. K. G protein−coupled bile acid receptor 1
(GPBAR1) stimulation mediates arterial vasodilation through a
KCa1.1 (BKCa)-dependent mechanism. J. Pharmacol. Exp. Ther.
2014, 348, 421−431.
(21) Hogenauer, K.; Arista, L.; Schmiedeberg, N.; Werner, G.;
̈
Jaksche, H.; Bouhelal, R.; Nguyen, D. G.; Bhat, B. G.; Raad, L.; Rauld,
C.; Carballido, J. M. G-Protein-Coupled Bile Acid Receptor 1
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX