ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Trianion Synthon Approach to Spirocyclic
Heterocycles
Matthew A. Perry, Richard R. Hill, and Scott D. Rychnovsky*
Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine,
Irvine, California 92697, United States
Received March 22, 2013
ABSTRACT
A variety of spirocyclic heterocycles have been constructed by a double-alkylation and reductive cyclization approach utilizing R-heteroatom
nitriles as trianion synthons. The method provides access to heteroatom-substituted spirocycles in a variety of ring sizes that are found in natural
products and are important in pharmaceutical lead development and optimization.
Spirocyclic frameworks are important motifs found in
natural products and in medicinal lead compounds. These
complex structures have a well-defined three-dimensional
spatial arrangement that exhibit specificity of action with
biological receptors and enzymes.1 Spirocycic frameworks
have been the target of several synthetic methods2 aimed at
the construction of structurally diverse natural and non-
natural molecules. Described herein is a general strategy
for the construction of spiro-heterocycles based on a
reductive cyclization process.3
pharmaceutical targets (Figure 1).5 The assembly of carbo-
cyclic6,7 and, especially, heterocyclic8 frameworks by dou-
ble alkylation of R-heteronitriles is an underdeveloped
transformation. Nitrile anions are competent nucleophiles
that have been applied to the formation of complex mole-
cules using nitrile anion alkylation methodology.9 Based
on the double alkylation/reductive cyclization strategy
we developed for the lepadiformine alkaloids,7 we set out
to extend this method to the synthesis of diverse spirocyclic
heterocycles.
Efficient construction of spirocyclic heterocycles is
important in the synthesis of natural products4 and
Synthesis of a variety of spirocyclic frameworks begins
with double alkylation of a bis-electrophile (6) with the
appropriate nitrile partner (e.g., 5). Subsequent deprotec-
tion with TBAF and phosphorylation with diethyl chloro-
phosphate and N-methylimidazole10 generated the cyano
(1) (a) Rajesh, S. M.; Perumal, S.; Menendez, J. C.; Yogeeswari, P.;
Sriram, D. Med. Chem. Commun. 2011, 2, 626–630.
(2) Kotha, S.; Deb, A. C.; Lahiri, K.; Manivannan, E. Synthesis 2009,
2, 165–193.
(3) (a) Takaoka, L. R.; Buckmelter, A. J.; La Cruz, T. E.; Rychnovsky,
S. D. J. Am. Chem. Soc. 2005, 127, 528–529. (b) La Cruz, T. E.;
Rychnovsky, S. D. J. Org. Chem. 2006, 71, 1068–1073. (c) La Cruz,
T. E.; Rychnovsky, S. D. J. Org. Chem. 2007, 72, 2602–2611. (d) Riberio,
C. M. R.; Demelo, S. J.; Bonin, M.; Quirion, J. C.; Husson, H. P.
Tetrahedron Lett. 1994, 35, 7227–7230.
(4) (a) Biard, J. ꢀF.; Guyot, S.; Roussakis, C.; Verbist, J.-F. Tetra-
hedron Lett. 1994, 35, 2691–2694. (b) Issa, H.; Tanaka, J.; Rachmat, R.;
Setiawan, A.; Trainto, A.; Higa, T. Mar. Drugs 2005, 3, 78–83.
(c) Hirasawa, Y.; Morita, H.; Kobayashi, J. Org. Lett. 2004, 6, 3389–
3391. (d) Daly, J. W.; Karle, I.; Myers, C. W.; Tokuyama, T.; Waters,
J. A.; Witkop, B. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 1870.
(e) Burnell, R. H.; Mootoo, B. S. Can. J. Chem. 1961, 39, 1090.
(f) Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. H. Tetra-
hedron 1993, 49, 8645–8656. (g) Blackman, A. J.; Li, C. Aust. J. Chem.
1994, 47, 1355–1361. (h) Blackman, A. J.; Li, C. Aust. J. Chem. 1995, 48,
955–965. (i) Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.;
Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. J. Antibiot.
1996, 49, 37–44. (j) Shirafuji, H.; Tsubotani, S.; Ishimaru, T.; Harada, S.
PCT Int. Appl. WO 91 13,887, 1991; Chem Abstr. 1992, 116, 39780t.
(5) (1) Sanofi-Aventis, Fr, WO2009EP04393, 2009 June 18. (2)
GlaxoSmithKline LLC, USA, WO2010US46782, 2010 August 26. (3)
Ghosh, A. K.; Krishnan, K.; Walters, D. E.; Cho, W.; Cho, H.; Koo, Y.;
Trevino, J.; Holland, L.; Buthod, J. Bioorg. Med. Chem. Lett. 1998, 8, 979–
982. (4) Glaxo Group Limited, UK, WO2008EP53595, 2008 March 27.
(a) The Boots Company PLC, USA, US5610161, 1997 March 11.
(b) Targacept, Inc., USA, WO2006034089, 2006 March 30. (c) Takeda
Chemical Industries, Ltd., USA, US5591849, 1997 January 7.
(6) Guillaume, D.; Brum-Bousquet, M.; Aitken, D. J.; Husson, H.-P.
Bull. Soc. Chim. de Fran 1994, 131, 391–396.
(7) (a) Perry, M. A.; Morin, M. D.; Slafer, B. W.; Wolckenhauer,
S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 2010, 132, 9591–9593.
(b) Perry, M. A.; Morin, M. D.; Slafer, B. W.; Rychnovsky, S. D. J. Org.
Chem. 2012, 77, 3390–3400.
(8) Gharpure, S. J.; Reddy, S. R. B. Org. Lett. 2009, 11, 2519–2522.
(9) (a) Fleming, F. F.; Zhang, Z. Tetrahedron 2005, 61, 747–789.
(b) Fleming, F. F.; Shook, B. C. Tetrahedron 2002, 58, 1–23 and
references cited therein.
(10) Soorukram, D.; Knochel, P. Org. Lett. 2004, 6, 2409–2411.
r
10.1021/ol400788q
XXXX American Chemical Society