Journal of the American Chemical Society
Communication
Table 3. Reoptimization for a Challenging Substrate Class
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
EPSRC (EP/M507994/1) and AstraZeneca (studentship to
P.C.), the European Research Council (ERC Grant 639594),
the Royal Society (URF to J.F.B.) and the Leverhulme Trust
are thanked for funding. The EPSRC UK National Mass
Spectrometry Facility at Swansea University is thanked for
analysis. G.E.M. Crisenza (Bristol) is thanked for substrate
synthesis.
REFERENCES
■
(1) Reviews: (a) Swift, E. C.; Jarvo, E. R. Tetrahedron 2013, 69,
5799. (b) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015,
54, 1082. (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem.
Rev. 2015, 115, 9587.
(2) Leading references: (a) Imao, D.; Glasspoole, B. W.; Laberge, V.
S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024. (b) Taylor, B.
L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011,
́
133, 389. (c) Sandrock, D. L.; Jean-Gerard, L.; Chen, C.; Dreher, S.
D.; Molander, G. A. J. Am. Chem. Soc. 2010, 132, 17108. (d) Maity,
P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson,
M. P. J. Am. Chem. Soc. 2013, 135, 280. (e) Zhou, Q.; Srinivas, H. D.;
Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
(f) Do, H.-Q.; Chandrashekar, E. R. R.; Fu, G. C. J. Am. Chem. Soc.
2013, 135, 16288. (g) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.;
Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027. (h) Review: Rygus,
J. P. G.; Crudden, C. M. J. Am. Chem. Soc. 2017, 139, 18124.
(3) Leading references: (a) Cherney, A. H.; Kadunce, N. T.;
Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7442. (b) Poremba, K. E.;
Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S. E. J. Am.
Chem. Soc. 2017, 139, 5684.
a
Determined by 1H NMR analysis of the crude reaction mixture.
b
c
Determined by chiral SFC analysis. The reaction was performed at
d
120 °C. Alkene equivalents and branched to linear selectivities are
indicated in parentheses. The reaction was performed at 90 °C.
e
(4) Leading references: (a) Bonet, A.; Odachowski, M.; Leonori, D.;
Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584. (b) Llaveria, J.;
Leonori, D.; Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 10958.
(c) Odachowski, M.; Bonet, A.; Essafi, S.; Conti-Ramsden, P.; Harvey,
J. N.; Leonori, D.; Aggarwal, V. K. J. Am. Chem. Soc. 2016, 138, 9521.
(5) For processes where the nucleophile is generated catalytically
from an alkene, see: (a) Friis, S. D.; Pirnot, M. T.; Buchwald, S. L. J.
Am. Chem. Soc. 2016, 138, 8372. (b) Gribble, M. W., Jr.; Guo, S.;
Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 5057. For tertiary
benzylic stereocenters via redox-relay Heck reactions, see: (c) Werner,
E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338,
1455. (d) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc.
2016, 138, 11461 and references cited therein.
(6) (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2017, 56, 11700. (b) Hayashi, T.; Matsumoto,
Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426. (c) Smith, J. R.; Collins,
B. S. L.; Hesse, M. J.; Graham, M. A.; Myers, E. L.; Aggarwal, V. K. J.
Am. Chem. Soc. 2017, 139, 9148.
(7) Review on branch selective Murai-type hydroarylations:
(a) Crisenza, G. E. M.; Bower, J. F. Chem. Lett. 2016, 45, 2.
Enantioselective hydroarylations of symmetrical bicycloalkenes are
not subject to these regiocontrol issues: (b) Shirai, T.; Yamamoto, Y.
Angew. Chem., Int. Ed. 2015, 54, 9894. (c) Dorta, R.; Togni, A. Chem.
Commun. 2003, 760. (d) Aufdenblatten, R.; Diezi, S.; Togni, A.
Monatsh. Chem. 2000, 131, 1345.
derivative 12g. The absolute stereochemistry of 12a was
determined by X-ray diffraction, and other assignments were
tentatively made on this basis. These results indicate that the
broad ligand design in Table 1 will facilitate enantioselective
alkene hydroarylations across a diverse range of substrates.
Studies into this aspect are ongoing.
In summary, catalyst systems that promote highly branch
selective and enantioselective hydroarylations of styrenes and
α-olefins are described. Thus, tertiary benzylic stereocenters
are generated directly and with complete atom economy. The
method simplifies access to this important structural motif
because prefunctionalization of the reaction partners is
avoided. Further evolution of our approach will include
processes that harness other classes of directing group and
more highly substituted alkene partners.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, characterization data (PDF)
Crystallographic data for 2b′′ (CIF)
Crystallographic data for 12a (sample 1) (CIF)
Crystallographic data for 12a (sample 2) (CIF)
(8) (a) Hatano, M.; Ebe, Y.; Nishimura, T.; Yorimitsu, H. J. Am.
Chem. Soc. 2016, 138, 4010. (b) Ebe, Y.; Onoda, M.; Nishimura, T.;
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX