Journal of the American Chemical Society
Communication
(4) Li, X.-W.; Yu, S.-J.; Wan, F.; Wan, B.-S.; Yu, X.-Z. Angew. Chem., Int.
Ed. 2013, 52, 2577.
In summary, a formal [4+1] annulation for the preparation of
N-aryl-2H-indazoles from azobenzenes and aldehydes has been
developed. The reaction is initiated by Rh(III)-catalyzed direct
addition of an azobenzene C−H bond to an aldehyde with
subsequent cyclization and aromatization. In addition to
enabling the Rh(III)-catalyzed activation of ortho-C−H bonds,
the azo moiety serves as a nucleophile to trap the initial aldehyde
addition product. A broad range of aldehydes and azobenzenes
participate in the reaction to provide access to a large variety of
differently substituted indazoles. Regioselective functionalization
of unsymmetrical azobenzenes can be controlled by either
electronic or steric effects. The N-4-hydroxy-3,5-dimethylphenyl
substituent can readily be oxidatively cleaved from 2H-indazoles
to provide indazoles lacking N-substitution. Moreover, N-aryl-
2H-indazoles represent a new class of fluorophores with high
extinction coefficients and large Stokes shifts. The preparation
and evaluation of 2H-indazoles with extended chromophores for
near-infrared applications18 and with appropriate substitution for
use as fluorogenic substrates19 are under active investigation.
(5) Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 12074.
(6) Zhu, C.; Xie, W.; Falck, J, R. Chem.Eur. J. 2011, 17, 12591.
(7) For recent reviews on Rh(III)-catalyzed C−H functionalization,
see: (a) Satoh, T.; Miura, M. Chem.Eur. J. 2010, 16, 11212.
(b) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev.
2011, 40, 4740. (c) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41,
3651.
(8) Other groups have also trapped the alcohol products generated
from Rh(III)-catalyzed direct addition of C−H bonds to aldehydes by
adding excess of an external oxidant to give ketones, see refs 1e, f, and g.
(9) For recent examples of Rh(III)-catalyzed nitrogen heterocycle
synthesis via coupling to carbon−carbon π-bonds, see: (a) Neely, J. M.;
Rovis, T. J. Am. Chem. Soc. 2013, 135, 66. (b) Zhen, W.; Wang, F.; Zhao,
M.; Du, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 51, 11819. (c) Hyster, T.
K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500. (d) Ye, B.;
̈
Cramer, N. Science 2012, 338, 504. (e) Neely, J. M.; Rovis, T. J. Am.
Chem. Soc. 2013, 135, 66. (f) Wang, H.; Grohmann, C.; Nimphius, C.;
Glorius, F. J. Am. Chem. Soc. 2012, 134, 19595. (g) Wang, H.; Glorius, F.
Angew. Chem., Int. Ed. 2012, 51, 7318.
(10) For selected reviews on heterocycle synthesis through C−H
functionalization, see: (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem,. Int. Ed. 2012, 51, 8960. (b) Colby, D. A.; Bergman, R. G.;
Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (d) Chen, X.; Engle, K. M.; Wang, D.-H.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (e) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and spectral data. This material is
(11) Typing the names of the following drug and drug candidates into
pound structure, bioactivity, published studies, and information
regarding ongoing clinical trials, applications, and usage: niraparib,
granisetron, pazopanib, linifanib, axitinib, and GDC-0941.
(12) (a) Information on 2-substituted 2H-indazole clinical candidates
niraparib and pazopanib can be accessed according to the instructions
provided in reference 11. (b) De Angelis, M.; Stossi, F.; Carlson, K. A.;
Katzenellenbogen, B. S.; Katzenellenbogen, K. A. J. Med. Chem. 2005,
48, 1132.
(13) For reviews on 2H-indazole synthesis, see: (a) Haddadin, M. J.;
Conrad, W. E.; Kurth, M. J. Mini-Rev. Med. Chem. 2012, 12, 1293.
(b) Sapeta, K.; Kerr, M. A. Sci. Synth., Knowledge Updates 2011, 1, 15.
For some recent selected syntheses of 2H-indazoles, see: (c) Hu, J.-T.;
Cheng, Y.-F.; Yang, Y.-Q.; Rao, Y. Chem. Commun. 2011, 47, 10133.
(d) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Org. Lett. 2011, 13, 3542.
(e) Halland, N.; Nazare, M.; R’kyek, O.; Alonso, J.; Urmann, M.;
Lindenschmidt, A. Angew. Chem., Int. Ed. 2009, 48, 6879. (f) Stokes, B.
J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12,
2884. (g) See also ref 16d.
(14) For selected reviews, see: (a) Beharry, A. A.; Woolley, G. A. Chem.
Soc. Rev. 2011, 40, 4422. (b) Natansohn, A.; Rochon, P. Chem. Rev.
2002, 102, 4139. (c) Ichimura, K. Chem. Rev. 2000, 100, 1847.
(15) (a) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
(b) Murahashi, S.; Horiie, S. J. Am. Chem. Soc. 1956, 78, 4816.
(16) (a) Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu,
T.; Chatani, N.; Murai, S. J. Organomet. Chem. 2003, 686, 134. (b) Dick,
A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(c) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337. (d) Li, H.-J.;
Li, P.-H.; Wang, L. Org. Lett. 2013, 15, 620. In this publication, a Pd-
catalyzed coupling of only symmetrical azobenzenes with aldehydes was
performed in the presence of excess TBHP as an oxidant to provide
ketone products. In a second step, reductive cyclization with Zn, NH4Cl
was performed to provide 2-aryl-2H-indazoles.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NIH Grant GM069559 (to J.A.E.).
R.G.B. acknowledges funding from The Director, Office of
Energy Research, Office of Basic Energy Sciences, Chemical
Sciences Division, U.S. Department of Energy, under Contract
DE-AC02-05CH11231. L.D.L. is supported by the Howard
Hughes Medical Institute.
REFERENCES
■
(1) For Rh(III)-catalyzed direct C−H bonds addition to aldehydes,
see: (a) Lian, Y.; Bergman, R. B.; Ellman, J. A. Chem. Sci. 2012, 3, 3088.
(b) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman, R. G.; Ellman, J. A.
Angew. Chem., Int. Ed. 2013, 52, 629. (c) Yang, L.; Correia, C. A.; Li, C.-J.
Adv. Synth. Catal. 2011, 353, 1269. (d) Li, Y.; Zhang, X.-S.; Chen, K.; He,
K.-H.; Pan, F.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2012, 14, 636. (e) Park, J.;
Park, E.; Kim, A.; Lee, Y.; Chi, K. W.; Kwak, J. H.; Jung, Y. H.; Kim, I. S.
Org. Lett. 2011, 13, 4390. (f) Sharma, S.; Park, E.; Park, J.; Kim, I. S. Org.
Lett. 2012, 14, 906. (g) Zhou, B.; Yang, Y.; Li, Y. Chem. Commun. 2012,
48, 5163. (h) Shi, X.-Y.; Li, C.-J. Adv. Synth. Catal. 2012, 354, 2933.
(2) (a) Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2011, 133, 1248. (b) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang,
W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50,
2115. (c) Tauchert, M. E.; Incarvito, C. D.; Rheingold, A. L.; Bergman,
R. G.; Ellman, J. A. J. Am. Chem. Soc. 2012, 134, 1482. (d) Hesp, K. D.;
Bergman, R. G.; Ellman, J. A. Org. Lett. 2012, 14, 2304. (e) Li, Y.; Zhang,
X.-S.; Li, H.; Wang, W.-H.; Chen, K.; Li, B.-J.; Shi, Z.-J. Chem. Sci. 2012,
3, 1634. (f) Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2012, 14,
4498. (g) Zhou, B.; Yang, Y.-X.; Lin, S.; Li, Y.-C. Adv. Synth. Catal. 2013,
355, 360.
(17) Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142−155.
(18) Kiyose, K.; Kojima, H.; Nagano, T. Chem. Asian J. 2008, 3, 506−
515.
(19) (a) Grimm, J. B.; Heckman, L. M.; Lavis, L. D. Prog. Mol. Biol.
Transl. Sci. 2013, 113, 1−34. (b) Harris, J. L.; Backes, B. J.; Leonetti, F.;
Mahrus, S.; Ellman, J. A.; Craik, C. S. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 7754.
(3) (a) Hesp, K. D.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2011, 133, 11430. (b) Zhou, B.; Hou, W.; Yang, Y.-X.; Li, Y.-C. Chem.
Eur. J. 2013, 19, 4701.
D
dx.doi.org/10.1021/ja402761p | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX