Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Scheme 4. Proposed reaction pathway.
Zhou, Y. Q. Zou, L. Q. Lu and W. J. XiDaOo,I:A10n.g10e3w9/.DC0hCeCm02.,41In6Ct.
Ed, 2019, 58, 1586-1604.
(a) (g) Y. Z. Cheng, X. Zhang and S. L. You, Sci. Bull., 2018, 63,
809-811; (b) H. E. Ho, A. Pagano, J. A. Rossi-Ashton, J. R.
Donald, R. G. Epton, J. C. Churchill, M. J. James, P. O'Brien, R.
J. K. Taylor and W. P. Unsworth, Chem. Sci., 2020, DOI:
10.1039/C9SC05311E.
(a) R. Glaser, S. Cohen, D. Donnell and I. Agranat, J. Pharm.
Sci., 1986, 75, 772-774; (b) M. Díaz-Gavilán, F. Rodríguez-
Serrano, J. A. Gómez-Vidal, J. A. Marchal, A. Aránega, M. Á.
Gallo, A. Espinosa and J. M. Campos, Tetrahedron, 2004, 60,
11547-11557; (b) C. J. Ohnmacht, J. S. Albert, P. R. Bernstein,
W. L. Rumsey, B. B. Masek, B. T. Dembofsky, G. M. Koether,
D. W. Andisik and D. Aharony, Bioorg. Med. Chem., 2004, 12,
2653-2669; (c) J. K. Mishra, K. Samanta, M. Jain, M. Dikshit
and G. Panda, Bioorg. Med. Chem. Lett., 2010, 20, 244-247;
(d) W. Prapalert, D. Santiarworn, S. Liawruangrath, B.
Liawruangrath and S. G. Pyne, Nat. Prod. Commun., 2014, 9,
1433-1435.
In summary, a visible-light driven synthesis of polycyclic
benzo[d][1,3]oxazocine
from
2-aminochalcone
with
5
6
bifunctional nucleophile was described. This protocol enabled
facile construction of diverse benzo[d][1,3]oxazocine from an
array of substituted 2-aminochalcone with different
bifunctional nucleophiles. Mechanistic studies supported the
generation of quinolinium from 2-amonchalcene via tandem E
to Z isomerization/cyclization/rearomatization driven by visible
light, which was in situ captured by bifunctional nucleophiles.
Subsequent cyclization of the coupled product enabled
establishing the bridged ring system.
Conflicts of interest
There are no conflicts to declare
7
8
(a) A. R. Katritzky, S. Rachwal and B. Rachwal, Tetrahedron,
1996, 52, 15031-15070; (b) V. Sridharan, P. A. Suryavanshi
and J. C. Menéndez, Chem. Rev., 2011, 111, 7157-7259.
(a) K. Fujimoto, T. Oka and M. Morimoto, Cancer Res., 1987,
47, 1516-1522; (b) M. E. Flanagan and R. M. Williams, J. Org.
Chem., 1995, 60, 6791-6797; (c) . H. Lim, T. Etoh, M. Hayashi,
K. Komiyama and T. S. Kam, Tetrahedron Lett., 2009, 50, 752-
754.
(a) F. M. Moghaddam, H. Saeidian, M. Kiamehr, Z. Mirjafary
and S. Taheri, ARKIVOC, 2010, 11, 91-100; (b) . Matloubiꢀ
Moghaddam, S. Taheri, Z. Mirjafary, H. Saeidian, M. Kiamehr
and M. Tafazzoli, Helv. Chim. Acta, 2011, 94, 142-147; (c) S.
Mondal, R. Paira, A. Maity, S. Naskar, K. B. Sahu, A. Hazra, P.
Saha, S. Banerjee and N. B. Mondal, Tetrahedron Lett., 2011,
52, 4697-4700.
Acknowledgement
We are grateful for financial support from the National Natural
Science Foundation of China (grants. 21722206, 21672171 to
WX and 21978124 to YH) and Shaanxi government. Financial
support from Chinese Universities Scientific Fund and the
Scientific Fund of Northwest A&F University are also
acknowledged. Innovative Talent Project of Educational
Department of Liaoning Provincial, (No. LR2018019 to YH).
9
Notes and references
10 Y.-Q. Gao, Y. Hou, L. M. Zhu, G. Z. Chen, D. Y. Xu, S. Y. Zhang,
Y. P. He and W. Q. Xie, Rsc Adv., 2019, 9, 29005-29009.
11 CCDC 1993548 and 1993549 contain the supplementary
crystallographic data for compound 6ba and 6co. These data
can be obtained free of charge from The Cambridge
1
(a) A. R. Pape, K. P. Kaliappan and E. P. Kundig, Chem. Rev.,
2000, 100, 2917-2940; (b) S. P. Roche and J. A. Porco Jr.,
Angew. Chem., Int. Ed., 2011, 50, 4068-4093; (c) C. X. Zhuo,
W. Zhang and S. L. You, Angew. Chem., Int. Ed, 2012, 51,
12662-12686; (d) C. Zheng and S. L. You, Chem, 2016, 1, 830-
857; (e) J. Wu, J. W. Li, H. Li and C. Y. Zhu, Chinese J. Org.
Chem., 2017, 37, 2203-2210; (f) Z. L. Wu Wen-Ting, You Shu-
Li, Acta Chim. Sinica, 2017, 75, 419-438; (g) W. C. Wertjes, E.
H. Southgate and D. Sarlah, Chem. Soc. Rev., 2018, 47, 7996-
8017.
Crystallographic
Data
Centre
via
12 The structure of 6cu and 6cv was established by 2D NMR
studies (see supporting information for details).
13 (a) T. Horaguchi, N. Hosokawa, K. Tanemura and T. Suzuki, J.
Heterocyclic Chem., 2002, 39, 61-67 (b) X. Z. Chen, S. X. Qiu,
S. S. Wang, H. F. Wang and H. B. Zhai, Org. Biomol. Chem.,
2017, 15, 6349-6352.
2
3
(a) A. J. Birch, J. Agric. Food Chem., 1974, 22, 162-167; (b) J.
M. Hook and L. N. Mander, Nat. Prod. Rep., 1986, 3, 35-85;
(c) T. J. Donohoe, R. Garg and C. A. Stevenson, Tetrahedron:
Asymmetry, 1996, 7, 317-344; (d) A. G. Schultz, Chem.
Commun., 1999, 14, 1263-1271; (e) F. López Ortiz, M. J.
Iglesias, I. Fernández, C. M. Andújar Sánchez and G. Ruiz
Gómez, Chem. Rev., 2007, 107, 1580-1691
(a) M. Ahamed and M. H. Todd, Eur. J. Org. Chem., 2010,
2010, 5935-5942; (b) J. A. Bull, J. J. Mousseau, G. Pelletier
and A. B. Charette, Chem. Rev., 2012, 112, 2642-2713; (c) D.
L. Comins, K. Higuchi and D. W. Young, in Advances in
Heterocyclic Chemistry, ed. A. R. Katritzky, Academic Press,
2013, vol. 110, pp. 175-235; (d) Q. Ding, X. Zhou and R. Fan,
Org. Biomol. Chem., 2014, 12, 4807-4815; (e) S. Sowmiah, J.
M. S. S. Esperança, L. P. N. Rebelo and C. A. M. Afonso, Org.
Chem. Front., 2018, 5, 453-493.
4
(a) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc.
Rev., 2011, 40, 102-113; (b) J. Xuan and W. J. Xiao, Angew.
Chem., Int. Ed, 2012, 51, 6828-6838; (c) X. J. Dai, X. L. Xu and
X. N. Li, Chinese J. Org. Chem., 2013, 33, 2046-2062; (d) C. K.
Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins