ChemComm
Communication
3 (a) H. Mattoussi, G. Palui and H. Bin Na, Adv. Drug Delivery Rev.,
¨
2012, 64, 138–166; (b) L. W. Zhang, W. Baumer and N. A. Monteiro-
Riviere, Nanomedicine, 2011, 6, 777–791.
4 (a) A. Bavec, Mol. Biol. Rep., 2010, 37, 2749–2755; (b) T. J. Magliery,
C. G. M. Wilson, W. Pan, D. Mishler, I. Ghosh, A. D. Hamilton and
L. Regan, J. Am. Chem. Soc., 2005, 127, 146–157.
5 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and
T. Nann, Nat. Methods, 2008, 763–775.
6 (a) A. Latorre and A. Somoza, ChemBioChem, 2012, 13, 951–958;
(b) B. Han and E. Wang, Anal. Bioanal. Chem., 2012, 402, 129–138;
(c) I. Diez and R. H. Ras, Nanoscale, 2011, 3, 1963–1970;
(d) C. I. Richards, S. Choi, J.-C. Hsiang, Y. Antoku, T. Vosch,
A. Bongiorno, Y.-L. Tzeng and R. M. Dickson, J. Am. Chem. Soc.,
2008, 130, 5038–5039.
7 J. Zheng, P. Nicovich and R. Dickson, Annu. Rev. Phys. Chem., 2007,
58, 409–431.
8 J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner and J. S. Martinez, Chem.
Commun., 2011, 47, 2294–2296.
Fig. 4 CD spectra of tris (3) before and after AgNC formation. There is a
9 (a) C. Ritchie, K. Johnsen, J. Kiser, Y. Antoku, R. Dickson and
J. Petty, J. Phys. Chem. C, 2007, 111, 175–181; (b) B. Sengupta,
C. M. Ritchie, J. G. Buckman, K. R. Johnsen, P. M. Goodwin and
J. T. Petty, J. Phys. Chem. C, 2008, 112, 18776–18782.
10 (a) S. Choi, J. Yu, S. A. Patel, Y.-L. Tzeng and R. M. Dickson,
Photochem. Photobiol. Sci., 2011, 10, 109–115; (b) J. Sharma,
H.-C. Yeh, H. Yoo, J. H. Werner and J. S. Martinez, Chem. Commun.,
2010, 46, 3280–3282; (c) P. R. O’Neill, L. R. Velazquez, D. G. Dunn,
E. G. Gwinn and D. F. Fygenson, J. Phys. Chem. C, 2009, 113,
4229–4233.
11 J. Sharma, R. C. Rocha, M. L. Phipps, H.-C. Yeh, K. A. Balatsky,
D. M. Vu, A. P. Shreve, J. H. Wernera and J. S. Martinez, Nanoscale,
2012, 4, 4107–4110.
12 (a) L. Deng, Z. Zhou, J. Li, T. Li and S. Dong, Chem. Commun., 2011,
47, 11065–11067; (b) W.-Y. Chen, G.-Y. Lan and H.-T. Chang, Anal.
Chem., 2011, 83, 9450–9455.
13 (a) S. Han, S. Zhu, Z. Liu, L. Hu, S. Parveen and G. Xu, Biosens.
Bioelectron., 2012, 36, 267–270; (b) K. Ma, Q. Cui, Y. Shao, F. Wu,
S. Xu and G. Liu, J. Nanosci. Nanotechnol., 2012, 12, 861–869;
(c) G.-Y. Lan, W.-Y. Chen and H.-T. Chang, RSC Adv., 2011, 1,
802–807; (d) Z. Zhou, Y. Du and S. Dong, Biosens. Bioelectron.,
2011, 28, 33–37.
14 (a) H.-C. Yeh, J. Sharma, I.-M. Shih, D. M. Vu, J. S. Martinez and
J. H. Werner, J. Am. Chem. Soc., 2012, 134, 11550–11558;
(b) G.-Y. Lan, W.-Y. Chen and H.-T. Chang, Biosens. Bioelectron.,
2011, 26, 2431–2435; (c) H.-C. Yeh, J. Sharma, J. J. Han, J. S. Martinez
and J. H. Werner, Nano Lett., 2010, 10, 3106–3110; (d) W. Guo,
J. Yuan, Q. Dong and E. Wang, J. Am. Chem. Soc., 2010, 132, 932–934.
15 (a) P. Shah, A. Rørvig-Lund, S. B. Chaabane, P. W. Thulstrup,
H. G. Kjaergaard, E. Fron, J. Hofkens, S. W. Yang and T. Vosch,
ACS Nano, 2012, 6, 8803–8814; (b) Y.-Q. Liu, M. Zhang, B.-C. Yin and
B.-C. Ye, Anal. Chem., 2012, 84, 5165–5169; (c) S. W. Yang and
T. Vosch, Anal. Chem., 2011, 83, 6935–6939.
16 (a) J. Li, X. Zhong, H. Zhang, C. X. Le and J.-J. Zhu, Anal. Chem.,
2012, 84, 5170–5174; (b) G.-Y. Lan, W.-Y. Chen and H.-T. Chang,
Analyst, 2011, 136, 3623–3638.
17 J. Yin, X. He, K. Wang, Z. Qing, X. Wu, H. Shi and X. Yang,
Nanoscale, 2012, 4, 110–112.
18 (a) J.-Y. Kim and J.-S. Lee, Nano Lett., 2009, 9, 4564–4569;
(b) S. J. Hurst, H. D. Hill and C. A. Mirkin, J. Am. Chem. Soc.,
2008, 130, 12192–12200; (c) T. A. Taton, R. C. Mucic, C. A. Mirkin
and R. L. Letsinger, J. Am. Chem. Soc., 2000, 122, 6305–6306.
19 J. M. Gibbs, S.-J. Park, D. R. Anderson, K. J. Watson, C. A. Mirkin and
S. T. Nguyen, J. Am. Chem. Soc., 2005, 127, 1170–1178.
20 (a) I. Eryazici, I. Yildirim, G. C. Schatz and S. T. Nguyen, J. Am. Chem.
Soc., 2012, 134, 7450–7458; (b) B. R. Stepp, J. M. Gibbs-Davis, D. L. F.
Koh and S. T. Nguyen, J. Am. Chem. Soc., 2008, 130, 9628–9629.
21 I. Eryazici, T. R. Prytkova, G. C. Schatz and S. T. Nguyen, J. Am. Chem.
Soc., 2010, 132, 17068–17070.
significant change in the structure after the generation of AgNCs.
high fluorescence. In this sense, minimization of the structures
using molecular mechanics suggests a globular structure for
the trimers. This structure could better protect the AgNCs from
quenching, compared with the standard oligonucleotides,
which have linear structures (ESI,† Fig. S15).
We also monitored the structural changes in the oligonucleo-
tides promoted by AgNCs formation using circular dichroism (CD).
Interestingly, a significant change was observed before and after
AgNCs formation where the positive band at 280 nm is completely
inverted after AgNCs formation (Fig. 4 and ESI† Fig. S9–S11). What
is more, this change in the structure is related to the fluorescence
intensity since when the fluorescence of AgNCs decreases the
positive band at 280 nm is recovered, whereas the negative band
at 270 nm decreases. These data suggest that the structure of the
oligonucleotides stabilizing fluorescent AgNCs is different from the
structure of the oligonucleotides alone and also that the original
DNA structures can be recovered over time leading to an efficient
quenching of the fluorescence of AgNCs.
We have prepared fluorescent silver nanoclusters using
novel trimers of oligonucleotides connected to a benzene
molecule. The fluorescence exhibited by these derivatives is
60 times higher than that obtained with a single strand. We
believe that the high fluorescence obtained using the trimers is
due to a cooperative effect between vicinal strands, which could
better stabilize the AgNCs and prevent their quenching. This
work illustrates the use of modified oligonucleotides in the
preparation of AgNCs with improved fluorescence properties.
Spanish Ministry of Science and Innovation (Grants: SAF2010-
15440, ACI2009-0969, MAT2011-15219-E and MAT2010-20843-
C02-01) and IMDEA Nanociencia are acknowledged for financial
support.
Notes and references
1 (a) R. H. Newman, M. D. Fosbrink and J. Zhang, Chem. Rev., 2011,
111, 3614–3666; (b) W. B. Frommer, M. W. Davidsonb and 22 (a) D. Y. Lee, N. Singh, M. J. Kim and D. O. Jang, Org. Lett., 2011, 13,
R. E. Campbell, Chem. Soc. Rev., 2009, 38, 2833–2841;
(c) V. Sample, R. H. Newman and J. Zhang, Chem. Soc. Rev., 2009,
38, 2852–2864.
3024–3027; (b) D. R. Turner, M. J. Paterson and J. W. Steed, Chem.
Commun., 2008, 1395–1397.
23 A. H. El-Sagheer and T. Brown, Chem. Soc. Rev., 2010, 39, 1388–1405.
2 (a) F. Wang, W. B. Tan, Y. Zhang, X. Fan and M. Wang, Nanotechnology, 24 (a) J. E. Moses, D. J. Ritson, F. Zhang, C. M. Lombardo, S. Haider,
2006, 17, R1–R13; (b) A. Waggoner, Curr. Opin. Chem. Biol., 2006, 10,
62–66.
N. Oldhama and S. Neidle, Org. Biomol. Chem., 2010, 8, 2926–2930;
(b) J. N. Moorthy and S. Saha, Eur. J. Org. Chem., 2010, 6359–6365.
c
4952 Chem. Commun., 2013, 49, 4950--4952
This journal is The Royal Society of Chemistry 2013