ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis and Application of Palladium
Precatalysts that Accommodate
Extremely Bulky Di-tert-butylphosphino
Biaryl Ligands
Nicholas C. Bruno and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, United States
Received April 29, 2013
ABSTRACT
A series of palladacyclic precatalysts that incorporate electron-rich di-tert-butylphosphino biaryl ligands is reported. These precatalysts are easily
prepared, and their use provides a general means of employing bulky ligands in palladium-catalyzed cross-coupling reactions. The application of
these palladium sources to various CÀN and CÀO bond-forming processes is also described.
Dialkylphosphino biaryl compounds have emerged as
privileged ligands for a wide range of palladium-catalyzed
cross-coupling processes. Di-tert-butylphosphino biaryls
represent a subset of this ligand class with catalysts based
upon them having demonstrated a unique ability to induce
extremely challenging and important processes efficiently,
including the construction of CÀC,1 CÀN,2 CÀO,3 and
CÀF bonds.4 In general, structural features of these
ligands facilitate difficult reductive eliminations, thus con-
tributing to their overall effectiveness. The formation of
the catalytically active LPd(0) species, however, is less
efficient when using these ligands. Two common methods
have been utilized to overcome this issue: (1) water-mediated
reduction of Pd(II) precursors5 and (2) ligand and Pd2(dba)3
premixing.6 Neither approach is ideal, as they both require
an extra equivalent of ligand, and more importantly, the
catalyst activation step involves an additional operation
conducted in a second reaction vessel. Thus, we sought a
simple, general approach to generating active catalysts based
on these ligands.
Addressing the difficulty of efficient formation of active
catalytic species, we have developed a family of air- and
moisture-stable palladacycles, shown in Scheme 1, that
allow for quantitative formation of the desired monoli-
gated Pd(0) species.7 These precatalysts are easily prepared
using standard techniques and provide highly active cata-
lysts for use in a broad array of synthetic applications.
Under the basic conditions commonly employed in cross-
coupling reactions, these complexes undergo deprotona-
tion and reductive elimination to generate LPd(0) along
(1) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J.; Wilson, J. E.
Org. Lett. 2010, 12, 3578.
(2) (a) Rosenberg, A. J.; Zhao, J.; Clark, D. A. Org. Lett. 2012, 14,
1764. (b) Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 4710.
(c) Ueda, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 10364. (d)
Fors, B. P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L. Tetrahedron
2009, 65, 6576. (d) Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L.
J. Am. Chem. Soc. 2012, 51, 11132.
(5) Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S. L. Org. Lett.
2008, 10, 3505.
(3) (a) Salvi, L.; Davis, N. R.; Ali, S. Z.; Buchwald, S. L. Org. Lett.
2012, 14, 170. (b) Wu, X.; Fors, B. P.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2011, 50, 9943. (c) Anderson, K. W.; Ikawa, T.; Tundel, R. E.;
Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
(4) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
(6) Ueda, S.; Su, M.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 132,
700.
(7) (a) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc.
2008, 130, 6686. (b) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem.
Soc. 2010, 132, 14073. (c) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L.
Chem. Sci 2013, 4, 916.
r
10.1021/ol401208t
XXXX American Chemical Society