Journal of the American Chemical Society
Page 4 of 5
Hildebrand, J. P.; Raabe, G. Angew. Chem. Int. Ed. 2001, 40, 1488.
Chemistry and Chemical Engineering disciplines of Xiamen
University.
1
2
3
4
5
6
(g) Gibson, S. E.; Ibrahim, H. Chem. Commun. 2002, 2465. (h)
Özçubukçu, S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407. (i)
Fu, G. C. Acc. Chem. Res. 2006, 39, 853. (j) Huang, H.; Peters, R.
Angew. Chem. Int. Ed. 2009, 48, 604. (k) Kanbayashi, N.; Onit-
suka, K. J. Am. Chem. Soc. 2010, 132, 1206. (l) Ogasawara, M.; Wu,
W.-Y.; Arae, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamika-
wa, K. Angew. Chem. Int. Ed. 2012, 51, 2951.
REFERENCES
(1) Halpern, J.; Trost, B. M. Proc. Nat. Acad. Sci. USA 2004, 101,
5347.
(2) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis, University Science Books, 2009.
7
8
9
(13) For the same reasons, octahedral metal complexes have
been exploited successfully as powerful structural scaffolds for
the design of enzyme inhibitors. See, for example: Feng, L.; Geis-
selbrecht, Y.; Blanck, S.; Wilbuer, A.; Atilla-Gokcumen, G. E.;
Filippakopoulos, P.; Kräling, K.; Celik, M. A.; Harms, K.; Maksi-
moska, J.; Marmorstein, R.; Frenking, G.; Knapp, S.; Essen, L.-O.;
Meggers, E. J. Am. Chem. Soc. 2011, 133, 5976.
(14) For pioneering work on the generic use of asymmetric H-
bonding catalysis, see: (a) Vachal, P.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 10012. (b) Wenzel, A. G.; Jacobsen, E. N. J.
Am. Chem. Soc. 2002, 124, 12964.
(15) For an early example of the asymmetric activation of ni-
troalkenes with a bifunctional thiourea catalyst, see: Okino, T.;
Hoashi, Y.; Takemoto; Y. J. Am. Chem. Soc. 2003, 125, 12672.
(16) For asymmetric double H-bond donor organocatalysts
with an additional hydroxyl group, see: (a) Herrera, R. P.; Sgar-
zani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44,
6576. (b) Sibi, M. P.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 8064.
(c) Herrera, R. P.; Monge, D.; Martín-Zamora, E.; Fernández, R.;
Lassaletta, J. M. Org. Lett. 2007, 9, 3303.
(3) (a) List, B.; Yang, J. W. Science 2006, 313, 1584. (b) MacMil-
lan, D. W. C. Nature 2008, 455, 304.
(4) (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b)
Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299. (c) Taylor, M. S.;
Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520. (d) Connon,
S. J. Chem. Eur. J. 2006, 12, 5418. (e) Doyle, A. G.; Jacobsen, E. N.
Chem. Rev. 2007, 107, 5713. (f) Yu, X.; Wang, W. Chem. Asian J.
2008, 3, 516. (g) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009,
38, 1187. (h) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci.
USA 2010, 107, 20678.
(5) For reviews on hydrogen bonding interactions involving
metal coordinated ligands, see: (a) Loeb, S. J.; Mercer, D. J.
Chem. Soc. Rev. 2010, 39, 3612. (b) Reedijk, J. Chem. Soc. Rev.
2013, 42, 1776.
(6) For reviews on chiral-at-metal complexes and their appli-
cations, see: (a) Pierre, J.-L. Coord. Chem. Rev. 1998, 178-180, 1183.
(b) Knof, U.; von Zelewsky, A. Angew. Chem. Int. Ed. 1999, 38,
302. (c) Brunner, H. Angew. Chem. Int. Ed. 1999, 38, 1194. (d)
Knight P. D.; Scott, P. Coord. Chem. Rev. 2003, 242, 125. (e)
Ganter, C. Chem. Soc. Rev. 2003, 32, 130. (f) Lacour, J.; Hebbe-
Viton, V. Chem. Soc. Rev. 2003, 32, 373. (g) Fontecave, M.;
Hamelin, O.; Ménage, S. Top. Organomet. Chem. 2005, 15, 271.
(h) Meggers, E. Eur. J. Inorg. Chem. 2011, 2911. (i) Bauer, E. B.
Chem. Soc. Rev. 2012, 41, 3153. (j) Crassous, J. Chem. Commun.
2012, 48, 9684. (k) Constable, E. C. Chem. Soc. Rev. 2013, 42, 1427.
(7) In pioneering precedence it was reported that the octahe-
dral complex ꢀ-[Co(1,2-ethylenediamine)3]{B(ArF24)4}3 catalyzes
the Michael addition of dimethyl malonate to 2-cyclopenten-1-
one enantioselectively, albeit with modest 33% ee. See:
Ganzmann, C.; Gladysz, J. A. Chem. Eur. J. 2008, 14, 5397.
(8) For an octahedral chiral-at-metal ruthenium complex as a
metalloligand for asymmetric catalysis, see: Hamelin, O.; Rim-
boud, M.; Pécaut, J.; Fontecave, M. Inorg. Chem. 2007, 46, 5354.
(9) For an octahedral chiral-at-metal ruthenium complex as
reactive, asymmetric oxidation catalyst, see: Chavarot, M.; Mé-
nage S.; Hamelin, O.; Charnay, F.; Pécaut, J.; Fontecave, M. In-
org. Chem. 2003, 42, 4810.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) You, S.-L. Chem. Asian J. 2007, 2, 820.
(18) For an early example of organocatalytic asymmetric trans-
fer hydrogenation with Hantzsch ester, see: Yang, J. W.; Hecha-
varria Fonseca, M. T.; List, B. Angew. Chem. Int. Ed. 2004, 43,
6660.
(19) For racemic and enantioselective organocatalytic transfer
hydrogenation of nitroalkenes, see: (a) Zhang, Z. G.; Schreiner, P.
R. Synthesis 2007, 2559. (b) Martin, N. J. A.; Ozores, L.; List, B. J.
Am. Chem. Soc. 2007, 129, 8976. (c) Martin, N. J. A.; Cheng, X.;
List, B. J. Am. Chem. Soc. 2008, 130, 13862. (d) Schneider, J. F.;
Lauber, M. B.; Muhr, V.; Kratzer, D.; Paradies, J. Org. Biomol.
Chem. 2011, 9, 4323.
(20) For metal-catalyzed asymmetric conjugate reduction of
nitroalkenes, see: (a) Czekelius, C.; Carreira, E. M. Angew. Chem.
Int. Ed. 2003, 42, 4293. (b) Czekelius, C.; Carreira, E. M. Org.
Lett. 2004, 6, 4575. (c) Czekelius, C.; Carreira, E. M. Org. Process
Res. Dev. 2007, 11 633. (d) Soltani, O.; Ariger, M. A.; Carreira, E.
M. Org. Lett. 2009, 11, 4196. (e) Tang, Y.; Xiang, J.; Cun, L.; Wang,
Y.; Zhu, J.; Liao, J.; Deng, J. Tetrahedron: Asymmetry 2010, 21,
1900. (f) Li, S.; Huang, K.; Cao, B.; Zhang, J.; Wu, W.; Zhang, X.
Angew. Chem. Int. Ed. 2012, 51, 8573.
(21) For the asymmetric conjugate bioreduction of nitroal-
kenes, see for example: (a) Ohta, H.; Kobayashi, N.; Ozaki, K. J.
Org. Chem. 1989, 54, 1802. (b) Hall, M.; Stueckler, C.; Kroutil, W.;
Macheroux, P.; Faber, K. Angew. Chem. Int. Ed. 2007, 46, 3934.
(c) Toogood, H. S.; Fryszkowska, A.; Hare, V.; Fisher, K.; Rouje-
inikova, A.; Leys, D.; Gardiner, J. M.; Stephens, G. M.; Scrutton,
N. S. Adv. Synth. Catal. 2008, 350, 2789. (d) Oberdorfer, G.;
Gruber, K.; Faber, K.; Hall, M. Synlett 2012, 23, 1857.
(10) For the induction of asymmetric autocatalysis by chiral
octahedral cobalt complexes, see: Sato, I.; Kadowaki, K.; Ohgo,
Y.; Soai, K.; Ogino, H. Chem. Commun. 2001, 1022.
(11) For representative examples of tetrahedral chiral-at-metal
complexes as part of asymmetric catalysts, see: (a) Brunner, H.;
Wachter, J.; Schmidbauer, J.; Sheldrick, G. M.; Jones, P. G. Or-
ganometallics 1986, 5, 2212. (b) Zwick, B. D.; Arif, A. M.; Patton,
A. T.; Gladysz, J. A. Angew. Chem. Int. Ed. Engl. 1987, 26, 910. (c)
Kromm, K.; Zwick, B. D.; Meyer, O.; Hampel, F.; Gladysz, J. A.
Chem. Eur. J. 2001, 7, 2015. (d) Kromm, K.; Osburn, P. L.;
Gladysz, J. A. Organometallics 2002, 21, 4275. (e) Seidel, F.
Gladysz, J. A. Synlett 2007, 986.
(12) For representative examples of planar chiral-at-metal
complexes as inert templates for asymmetric catalysts, see: (a)
Hayashi, T.; Kumada, M. Acc. Chem. Res. 1982, 15, 395. (b) Togni,
A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J.
Am. Chem. Soc. 1994, 116, 4062. (c) Kudis, S.; Helmchen, G.
Angew. Chem. Int. Ed. 1998, 37, 3047. (d) Ireland, T.;
Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Angew.
Chem. Int. Ed. 1999, 38, 3212. (e) Fu, G. C. Acc. Chem. Res. 2000,
33, 412. (f) Bolm, C.; Kesselgruber, M.; Hermanns, N.;
(22) Catalysis experiments were routinely performed in brown
glass vials under reduced light as a precaution to exclude poten-
tial interferences from photoactivation of the iridium complexes.
(23) For a recent review on low-loading asymmetric organoca-
talysis, see: Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto,
R. Chem. Soc. Rev. 2012, 41, 2406.
(24) Calculated from the transfer hydrogenation reaction with
0.1 mol% catalyst loading (entry 10 of Table 2) under the assump-
tion that the formation of the minor enantiomer is attributed to
the uncatalyzed background reaction.
ACS Paragon Plus Environment