Efficient Preparation of Hindered Peptides
(and references therein), and dolastatins13 (and references
therein). N-Methyl peptides exhibit antibiotic,14 anticancer,15-17
and antiviral activity.18
SCHEME 1
The cyclic side chain of the naturally occurring N-alkylated
amino acid proline locks a peptide backbone at a dihedral angle
of approximately -75°. Thus proline has exceptional confor-
mational rigidity compared to other amino acids and conse-
quently is often found in very tight turns in protein structures.
Proline also introduces kinks into R helices, since it is unable
to adopt a normal helical conformation. These conformational
properties of proline and proline rich sequences exhibit interest-
ing biological and medicinal roles: (1) drug delivery activity,19
(2) important components of collagen,19 (3) intracellular cell
signaling, and (4) quenching reactive oxygen species.20
Previously, we reported the successful preparation of peptides
without detectable racemization (<5% by NMR analysis and
<1% by HPLC analysis) in average yields of 88%.21-25 The
present paper reports convenient procedures for the incorporation
of hindered amino acids into peptide chains.
TABLE 1. Preparation of N-Terminus Aib Dipeptides 3a-e and
(3c + 3c′) from N-(Cbz- and Fmoc-Aib-)Bt 1a,b and Free Amino
Acids 2a-c and (2c + 2c′)
retention
yield
(%)a
time
(min)
entry
amino acid
product
1
2
3
4
L-Phe-OH 2a
L-Trp-OH 2b
L-Met-OH 2c
Cbz-Aib-L-Phe-OH 3a
Cbz-Aib-L-Trp-OH 3b
Cbz-Aib-L-Met-OH 3c
84
85
91
92
6.19
5.79
6.43
6.40, 7.34
DL-Met (2c + 2c′) Cbz-Aib-DL-Met-OH
(3c + 3c′)
Fmoc-Aib-L-Phe-OH 3d
Fmoc-Aib-L-Met-OH 3e
5
6
L-Phe-OH 2a
L-Met-OH 2c
67
70
5.39
5.82
a Isolated yield.
Results and Discussions
Recent literature approaches to realize coupling at the
carbonyl group of Aib to give hindered peptides (Scheme 2)
include (i) the use of DCC or DCC/HOBT26 (and references
within), (ii) 2-mercaptopyridone-1-oxide based uronium salts
(HOTT and TOTT),27 (iii) the active ester coupling method,28
(iv) CIP (2-chloro-1,3-dimethylimidazolidium hexaflurophos-
phate) in the presence of additives such as HOAt or HODhbt,29,30
(v) enzymatic coupling,31 (vi) PyBOP and PyBroP,26 and (vii)
polymer-supported BOP coupling reagents.32 The methods of
Scheme 2 give Aib-containing dipeptides in variable yields
(23-96%) depending upon the protecting group (Pg) and -R
group incorporated. Most need labor intensive procedures (ref
26 and references therein), utilize expensive or unstable
reagents,31 and/or need an additional deprotection28 step, because
amino acid esters are used.26-29,32 In comparison, our methodol-
ogy offers simple preparative and workup procedures, takes
less time to complete, uses inexpensive reagents, gives high
yields, and frequently allows free amino acids as coupling
components.
(b) By Coupling at the Amino Group of Aib. Our attempts
under varying conditions (temperature, solvent systems, time)
and reagents (base, additives) to couple N-(protected-R-
aminoacyl)benzotriazoles with the NH2 of free Aib (i.e.,
H2NMe2CCO2H), resulted in extensive hydrolysis of 1c-f and
(1c + 1c′). However, Aib methyl ester 4 was successfully
coupled in the presence of Et3N (in acetonitrile) at 20 °C in
24-36 h (Scheme 3 and Table 2). Under microwave irradiation
in the presence of 1 equiv of Et3N in THF as solvent at 55 and
60 °C (Scheme 3 and Table 2) the preparation of compounds
5a-d and (5a + 5a′) needed 1 h. Under conventional heating
I. Preparation of Aib-Containing Dipeptides. (a) Using
Carboxyl Activated N-Protected Aib. We now show that
amino acids 2a-c and (2c + 2c′) (compound numbers written
within brackets represent diastereomeric mixtures or race-
mates; compound numbers without brackets represent enantio-
mers) couple with N-(Cbz- and Fmoc-Aib-)Bt 1a,b (Bt )
benzotriazol-1-yl) in partially aqueous solution (CH3CN/H2O)
in the presence of Et3N in 1 h at 20 °C to give dipeptides 3a-e
and (3c + 3c′) (67-92%) isolated without chromatography
(Scheme 1 and Table 1). The enantiopurity of the dipeptides
3a-e was supported by HPLC analyses using a Chirobiotic T
column (detection at 254 nm, flow rate 0.5 mL/min, and MeOH
as solvent). As expected, HPLC analysis of the enantiopure
dipeptides 3a-e showed a single peak. In contrast, two peaks
of equal intensity were observed for the corresponding racemic
mixture (3c + 3c′) (Table 1).
(12) Jouin, P.; Poncet, J.; Dufour, M. N.; Pantaloni, A.; Castro, B. J.
Org. Chem. 1989, 54, 617-627.
(13) Pettit, G. R.; Singh, S. B.; Herald, D. L.; Lloydwilliams, P.; Kantoci,
D.; Burkett, D. D.; Barkoczy, J.; Hogan, F.; Wardlaw, T. R. J. Org. Chem.
1994, 59, 6287-6295.
(14) Abe, H.; Sato, K.; Kato, T.; Izumiya, N. Bull. Chem. Soc. Jpn. 1976,
49, 3113-3118.
(15) Aoki, S.; Cao, L. W.; Matsui, K.; Rachmat, R.; Akiyama, S.;
Kobayashi, M. Tetrahedron 2004, 60, 7053-7059.
(16) Haviv, F.; Henkin, J.; Bradley, M. F.; Kalvin, D. M. PCT Int. Appl.,
038397, 2001; Chem. Abstr. 2001, 135, 5822.
(17) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Fujii, Y.; Kizu, H.; Boyd,
M. R.; Boettner, F. E.; Doubek, D. L.; Schmidt, J. M.; Chapuis, J. C.;
Michel, C. Tetrahedron 1993, 49, 9151-9170.
(18) Printsevskaya, S. S.; Solovieva, S. E.; Olsufyeva, E. N.; Mirchink,
E. P.; Isakova, E. B.; De Clercq, E.; Balzarini, J.; Preobrazhenskaya, M.
N. J. Med. Chem. 2005, 48, 3885-3890.
(19) Sanclimens, G.; Shen, H.; Giralt, E.; Albericio, F.; Saltzman, M.
W.; Royo, M. Biopolymers 2005, 80, 800-814.
(26) Frerot, E.; Coste, J.; Pantaloni, A.; Dufour, M. N.; Jouin, P.
Tetrahedron 1991, 47, 259-270.
(20) Alia, J. M.; Backendorf, C. M. P. PCT Int. Appl., 075903, 2003;
Chem. Abstr. 2003, 139, 240387.
(27) Bailen, M. A.; Chinchilla, R.; Dodsworth, D. J.; Najera, C. J. Org.
Chem. 1999, 64, 8936-8939.
(21) Katritzky, A. R.; Suzuki, K.; Singh, S. K. Synthesis 2004, 2645-
2652.
(28) McGahren, W. J.; Goodman, M. Tetrahedron 1967, 23, 2017-2030.
(29) Akaji, K.; Kuriyama, N.; Kiso, Y. Tetrahedron Lett. 1994, 35, 3315-
3318.
(22) Katritzky, A. R.; Angrish, P.; Hur, D.; Suzuki, K. Synthesis 2005,
397-402.
(23) Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesis 2006, 411-
(30) Akaji, K.; Tamai, Y.; Kiso, Y. Tetrahedron Lett. 1995, 36, 9341-
9344.
424.
(24) Katritzky, A. R.; Todadze, E.; Cusido, J.; Angrish, P.; Sheshtopalov,
A. A. Chem. Biol. Drug Des. 2006, 68, 37-41.
(25) Katritzky, A. R.; Todadze, E.; Cusido, J.; Sheshtopalov, A. A.;
Angrish, P. Chem. Biol. Drug Des. 2006, 68, 42-47.
(31) Sekizaki, H.; Itoh, K.; Toyota, E.; Tanizawa, K. Tetrahedron Lett.
1997, 38, 1777-1780.
(32) Filip, S. V.; Lejeune, V.; Vors, J. P.; Martinez, J.; Cavelier, F. Eur.
J. Org. Chem. 2004, 1936-1939.
J. Org. Chem, Vol. 72, No. 15, 2007 5795