886
T. Hoshikawa et al.
FEATURE ARTICLE
(2) (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem.
2009, 52, 6752. (b) Dandapani, S.; Marcaurelle, L. A.
Nature Chem. Biol. 2010, 6, 861.
(3) For recent reviews on direct C–H transformations, see:
(a) Handbook of C–H Transformations; Vols. 1 and 2;
Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005.
Rev. 2007, 107, 2725. (b) Hoffmann, N. Chem. Rev. 2008,
108, 1052.
(11) Preliminary results were reported in ref. 5c.
(12) See references in ref. 5a and: (a) Malatesta, V.; Ingold, K. U.
J. Am. Chem. Soc. 1981, 103, 609. (b) Jenkins, I. D. J. Chem.
Soc., Chem. Commun. 1994, 1227. (c) Busfield, W. K.;
Grice, D.; Jenkins, I. D. J. Chem. Soc., Perkin Trans. 2 1994,
1079.
(13) Tanner, D. D.; Rahimi, P. M. J. Org. Chem. 1979, 44, 1674.
(14) Cho, C. H.; Lee, J. Y.; Kim, S. Synlett 2009, 81.
(15) For representative examples of radical reactions using TsCN
as a cyanogen source, see: (a) Fang, J.-M.; Chen, M.-Y.
Tetrahedron Lett. 1987, 28, 2853. (b) Barton, D. H. R.;
Jaszberenyl, J. C.; Theodorakis, E. A. Tetrahedron 1992, 48,
2613. (c) Kim, S.; Song, H.-J. Synlett 2002, 2110. (d) Kim,
S.; Lim, C. J. Angew. Chem. Int. Ed. 2002, 41, 3265.
(e) Kim, S.; Cho, C. H.; Kim, S.; Uenoyama, Y.; Ryu, I.
Synlett 2005, 3160. (f) Schaffner, A.-P.; Darmency, V.;
Renaud, P. Angew. Chem. Int. Ed. 2006, 45, 5847.
(g) Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. 2007,
46, 4519. (h) Leggans, E. K.; Barker, T. J.; Duncan, K. K.;
Boger, D. L. Org. Lett. 2012, 14, 1428.
(16) Generally, the more electron-rich C–H bonds are more
reactive toward C(sp3)–H bond functionalizations when
electrophilic reactants are used. For examples, see refs. 5c,
5d, and: (a) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. J.
Am. Chem. Soc. 1989, 111, 6749. (b) Chen, M. S.; White, M.
C. Science (Washington, D.C.) 2007, 318, 783. (c) Fiori, K.
W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. Tetrahedron
2009, 65, 3042. (d) Newhouse, T.; Baran, P. S. Angew.
Chem. Int. Ed. 2011, 50, 3362.
(b) Handbook of Reagents for Organic Synthesis: Reagents
for Direct Functionalization of C–H Bonds; Paquette, L. A.;
Fuchs, P. L., Eds.; Wiley: Chichester, 2007. (c) Special issue
on C–H Functionalizations in Organic Synthesis: Chem.
Soc. Rev. 2011, 40, 1855–2038.
(4) For recent reviews on direct C(sp3)–H transformations to
form C–C bonds, see: (a) Ishii, Y.; Sakaguchi, S.; Iwahama,
T. Adv. Synth. Catal. 2001, 343, 393. (b) Fokin, A. A.;
Schreiner, P. R. Adv. Synth. Catal. 2003, 345, 1035.
(c) Knorr, R. Chem. Rev. 2004, 104, 3795. (d) Davies, H.
M.; Manning, J. R. Nature (London) 2008, 451, 417.
(e) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (f) Chen,
X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int.
Ed. 2009, 48, 5094. (g) Li, C.-J. Acc. Chem. Res. 2009, 42,
335. (h) Akindele, T.; Yamada, K.; Tomioka, K. Acc. Chem.
Res. 2009, 42, 345. (i) Daugulis, O.; Do, H.-Q.; Shabashov,
D. Acc. Chem. Res. 2009, 42, 1074. (j) Shi, W.; Liu, C.; Lei,
A. Chem. Soc. Rev. 2011, 40, 2761. (k) Klussmann, M.;
Sureshkumar, D. Synthesis 2011, 353. (l) Sun, C.-L.; Li, B.-
J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(5) We recently reported direct photoinduced C(sp3)–H
acylation, carbamoylation, cyanation and alkynylation
(a) Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett.
2010, 51, 872. (b) Kamijo, S.; Hoshikawa, T.; Inoue, M.
Tetrahedron Lett. 2011, 52, 2885. (c) Kamijo, S.;
Hoshikawa, T.; Inoue, M. Org. Lett. 2011, 13, 5928.
(d) Hoshikawa, T.; Kamijo, S.; Inoue, M. Org. Biomol.
Chem. 2013, 11, 164.
(17) Formation of ArSO2SO2Ar, dimerized sulfinyl radical D,
was observed in some cases. For the reported 1H NMR data
of the disulfone, see: (a) Liu, Y.; Zhang, Y. Tetrahedron
Lett. 2003, 44, 4291. (b) Weber, W. G.; McLeary, J. B.;
Sanderson, R. D. Tetrahedron Lett. 2006, 47, 4771.
(18) Bailey, S.; Humphries, P. S.; Skalitzky, D. J.; Su, W.-G.;
Zehnder, L. R. WO 2004092145 (A1), 2004.
(19) The yield of 2g significantly decreased, when the reaction
was performed without addition of 2,6-di-tert-butylpyridine.
(20) For an account of radical clock, see: Griller, D.; Ingold, K.
U. Acc. Chem. Res. 1980, 13, 317.
(6) The Chemistry of the Cyano Group; Rappoport, Z., Ed.; John
Wiley & Sons: London, 1970.
(7) For a recent review of nitrile-containing natural products,
see: Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
(8) For a recent review of nitrile-containing pharmaceuticals,
see: Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.;
Shook, B. C. J. Med. Chem. 2010, 53, 7902.
(9) Direct C(sp3)–H cyanation has been mostly limited to
functionalization of amine derivatives, allylic and benzylic
compounds. For representative examples see: (a) Müller, E.;
Huber, H. Chem. Ber. 1963, 96, 670. (b) Müller, E.; Huber,
H. Chem. Ber. 1963, 96, 2319. (c) Hayashi, Y.; Mukaiyama,
T. Chem. Lett. 1987, 1811. (d) Lemaire, M.; Doussor, J.;
Guy, A. Chem. Lett. 1988, 1581. (e) Zhdankin, V. V.; Kuehi,
C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward,
J. K.; Simonsen, A. J. Tetrahedron Lett. 1995, 36, 7975.
(f) Zheng, Z.; Hill, C. L. Chem. Commun. 1998, 2467.
(g) Tajima, T.; Nakajima, A. J. Am. Chem. Soc. 2008, 130,
10496. (h) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya,
N. J. Am. Chem. Soc. 2008, 130, 11005. (i) Singhal, S.; Jain,
S. L.; Sain, B. Chem. Commun. 2009, 2371. (j) Han, W.;
Ofial, A. R. Chem. Commun. 2009, 5024. (k) Shu, X.-Z.;
Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M.
J. Org. Chem. 2009, 74, 7464. (l) Allen, J. M.; Lambert, T.
H. J. Am. Chem. Soc. 2011, 133, 1260. (m) Hari, D. P.;
König, B. Org. Lett. 2011, 13, 3852. (n) Rueping, M.; Zhu,
S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709.
(o) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10,
835. (p) Ma, L.; Chen, W.; Seidel, D. J. Am. Chem. Soc.
2012, 134, 15305.
(21) For recent review on the α-amino nitrile, see: Enders, D.;
Shilvock, J. P. Chem. Soc. Rev. 2000, 359.
(22) For recent reviews of Strecker reactions, see: (a) Yet, L.
Angew. Chem. Int. Ed. 2001, 40, 875. (b) Groger, H. Chem.
Rev. 2003, 103, 2795. (c) Wang, J.; Liu, X.; Feng, X. Chem.
Rev. 2011, 111, 6947.
(23) Optical rotation of 4g: [α]D25 –100.0. For comparison, see:
(a) Yamamoto, Y.; Hoshino, J.; Fujimoto, Y.; Ohmoto, J.;
Sawada, S. Synthesis 1993, 298. (b) Sunilkumar, G.;
Nagamani, D.; Argade, N. P.; Ganesh, K. N. Synthesis 2003,
2304.
(24) Banet, K.; Hagedorn, M.; Wutke, J.; Ecorchard, P.;
Schaarschmidt, D.; Lang, H. Chem. Commun. 2010, 46,
4058.
(25) Fischer, D.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.
(26) Narasaka, K.; Kohno, Y. Bull. Chem. Soc. Jpn. 1993, 66,
3456.
(27) Gardelli, C.; Nizi, E.; Muraglia, E.; Crescenzi, B.; Ferrara,
M.; Orvieto, F.; Pace, P.; Pescatore, G.; Poma, M.; del
Rosario Rico Ferreira, M.; Scarpelli, R.; Homnick, C. F.;
Ikemoto, N.; Alfieri, A.; Verdirame, M.; Bonelli, F.; Paz, O.
G.; Taliani, M.; Monteagudo, E.; Pesci, S.; Laufer, R.;
Felock, P.; Stillmock, K. A.; Hazuda, D.; Rowley, M.;
Summa, V. J. Med. Chem. 2007, 50, 4953.
(10) For recent reviews on photochemical reactions, see:
(a) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem.
Synthesis 2013, 45, 874–887
© Georg Thieme Verlag Stuttgart · New York