J . Org. Chem. 1997, 62, 3511-3519
3511
P a r tia l OH f Me Rep la cem en t in th e Ca lixa r en e Sca ffold :
P r ep a r a tion , Con for m a tion , a n d Ster eod yn a m ics of
Tetr a -ter t-bu tyl-25,27-d ih yd r oxy-26,28-d im eth ylca lix[4]a r en e a n d
Its Dim eth yl Eth er Der iva tive
J oel M. Van Gelder,† J o¨rg Brenn,‡ Iris Thondorf,*,‡ and Silvio E. Biali*,†
Department of Organic Chemistry, The Hebrew University of J erusalem, J erusalem 91904, Israel, and
Institut fu¨r Biochemie, Fachbereich Biochemie/ Biotechnologie, Martin-Luther-Universita¨t
Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06099, Halle, Germany
Received December 19, 1996X
The first example of the replacement of hydroxyl groups of a calixarene by methyls is described.
Reaction of the bis(spirodienone) calixarene derivative 3B with MeLi afforded the bis addition
product 4 which is derived, as shown by X-ray crystallography, from attack on the face of the
carbonyls which is anti to the ether oxygen. The reaction of the alternant bis(spirodienone)
calixarene derivative 3A with excess MeLi resulted in addition to the CdO groups, but with a
concomitant cleavage of the spiro bonds. Ionic hydrogenation (CF3COOH/Et3SiH) of this product
(5) yielded 5,11,17,23-tetra-tert-butyl-25,27-dihydroxy-26,28-dimethylcalix[4]arene (6) while ionic
hydrogenation of 4 resulted in fragmentation of the macrocyclic ring. Calixarene 6 adopts a 1,3-
alternate conformation both in solution and in the solid state. 6 is conformationally flexible, and
an inversion barrier of 15.1 kcal mol-1 was measured for it by DNMR. The dimethyl ether derivative
of 6 (i.e., 7) exists in a partial cone (paco) conformation and undergoes two distinct dynamic processes
possessing barriers of 13.3 and 18.1 kcal mol-1. Molecular mechanics calculations predict correctly
the preferred conformation of 6 and 7 and indicate that the topomerization pathways resulting in
the mutual exchange of the protons within a methylene group are the following: 1,3-alt f paco-
(CH3) f 1,2-alt f paco(CH3)* f 1,3-alt* for 6, and paco(CH3) f 1,3-alt f paco(OCH3) f 1,2 alt f
paco(OCH3)* f1,3-alt* f paco(CH3)* for 7 with calculated barriers of 15.0 and 16.1 kcal mol-1
,
respectively.
In tr od u ction . The calix[n]arenes are macrocyclic
compounds which are usually obtained by base-catalyzed
condensation of p-alkylphenols and formaldehyde and are
of interest as potential ligands and molecular hosts.1 One
of the most difficult synthetic tasks in calixarene chem-
istry is to replace (rather than to derivatize) the OH
groups. There are only few synthetic methodologies
capable of replacing a phenolic hydroxyl by another
group.2 At present, only the partial and/or total replace-
ment of the OH groups of calixarenes by H,3 SH,4 and
NH2 groups5 or their formal dehydration to afford xan-
thene derivatives5d,6 have been reported. Since the
preferred conformation and conformational rigidity of the
calixarenes are mainly due to a cyclic array of intramo-
lecular hydrogen bonds (“circular hydrogen bonding”), the
replacement of OH groups should influence both the
static and dynamic stereochemistries of the resulting
systems.
Several [14] metacyclophane systems which incorporate
intraannular methyl groups (e.g., 2a -d ) have been
described in the literature.7-10 These compounds were
prepared by tetramerization of suitable precursors, and
(3) See for example: (a) Goren, Z.; Biali, S. E. J . Chem. Soc., Perkin
Trans. 1 1990, 1484. (b) Grynszpan, F.; Goren, Z.; Biali, S. E. J . Org.
Chem. 1991, 56, 532. (c) de Vains, J .-B. R.; Pellet-Rostaing, S.;
Lamartine, R. Tetrahedron Lett. 1994, 35, 8147. (d) Harada, T.; Ohseto,
F.; Shinkai, S. Tetrahedron 1994, 50, 13377. (e) Matsuda, K.; Naka-
mura, N.; Takahashi, K.; Inoue, K.; Koga, N.; Iwamura, H. J . Am.
Chem. Soc. 1995, 117, 5550. (f) For additional synthesis of dehydroxy-
lated calixarenes see: Fukazawa, Y.; Deyama, K.; Usui, S. Tetrahedron
Lett. 1992, 33, 5803. Usui, S.; Deyama, K.; Kinoshita, R.; Odagaki, Y.;
Fukazawa, Y. Tetrahedron Lett. 1993, 34, 8127.
(4) (a) Gibbs, C. G.; Gutsche, C. D. J . Am. Chem. Soc. 1993, 115,
5338. (b) Ting, Y.; Verboom, W.; Groenen, L. C.; van Loon, J . D.;
Reinhoudt, D. N. J . Chem. Soc., Chem. Commun. 1990, 1432. (c)
Delaigue, X.; Harrowfield, J . McB.; Hosseini, M. W.; de Cian, A.;
Fischer, J .; Kyritsakas, N. J . Chem. Soc., Chem. Commun. 1994, 1579.
(d) Delaigue, X.; Hosseini, M. W.; Kyritsakas, N.; de Cian, A.; Fischer,
J . J . Chem. Soc., Chem. Commun. 1995, 609. (e) Gibbs, C. G.; Sujeeth,
P. K.; Rogers, J . S.; Stanley, G. G.; Krawiec, M.; Watson, W. H.;
Gutsche, C. D. J . Org. Chem. 1995, 60, 8394.
† Hebrew University of J erusalem.
‡ Institut fu¨r Biochemie.
X Abstract published in Advance ACS Abstracts, May 1, 1997.
(1) For reviews on calixarenes see: (a) Gutsche, C. D. Calixarenes;
Royal Society of Chemistry: Cambridge, 1989. (b) Calixarenes:
A
(5) (a) Ohseto, F.; Murakami, H.; Araki, K.; Shinkai, S. Tetrahedron
Lett. 1992, 33, 1217. (b) Aleksiuk, O.; Grynszpan, F.; Biali, S. E. J .
Org. Chem. 1993, 58, 1994. (c) Grynszpan, F.; Aleksiuk, O.; Biali, S.
E. J . Org. Chem. 1994, 59, 2070. (d) Aleksiuk, O.; Cohen, S.; Biali, S.
E. J . Am. Chem. Soc. 1995, 117, 9645.
(6) Diazonium chemistry allowed the preparation of halo- and
xanthenocalix[5]arenes: Van Gelder, J . M.; Aleksiuk, O.; Biali, S. E.
J . Org. Chem. 1996, 61, 8419.
(7) Pappalardo, S.; Bottino, F.; Ronsisvalle, G. Phosphorus Sulfur
1984, 19, 327.
(8) Delaigue, X.; Hosseini, M. W. Tetrahedron Lett. 1993, 34, 8111.
(9) Pappalardo, S.; Ferguson, G.; Gallagher, J . F. J . Org. Chem.
1992, 57, 7102.
Versatile Class of Macrocyclic Compounds; Vicens, J ., Bo¨hmer, V., Eds.;
Kluwer: Dordrecht, 1991. (c) Bo¨hmer, V. Angew. Chem., Int. Ed.
Engl. 1995, 34, 713. (d) Gutsche, C. D. Aldrichim. Acta 1995, 28, 1.
(2) (a) According to the “replacement of the hydroxyl group” section
of the recent Rodd’s Chemistry of Carbon Compounds (Tyman, J . H.
P. In Second Supplements to the 2nd Edition of Rodd's Chemistry of
Carbon Compounds; Sainsbury, M., Ed.; Elsevier, Amsterdam, 1996,
Volume IIIA, p 247), phenolic hydroxyl groups can be replaced using
phosgene in o-xylene. As an example, it is stated that 4-hydroxyben-
zophenone reacts under these conditions, yielding 4-(chlorocarbonyl)-
benzophenone. However, the products obtained in the patent cited
(BASF AG, DE 384443; Chem. Abstr. 1991, 114, 6031e) are not the
chlorocarbonyls but the corresponding chloroformate derivatives. (b)
For a review on hydroxyl replacement in calixarenes see: Biali, S. E.
Isr. J . Chem., in press.
(10) Scha¨tz, R.; Weber, C.; Schilling, G.; Oeser, T.; Huber-Patz, U.;
Irngartinger, H.; von der Lieth, C.-W.; Pipkorn, R. Liebigs Ann. 1995,
1401.
S0022-3263(96)02379-1 CCC: $14.00 © 1997 American Chemical Society