ChemComm
Communication
Table 2 Selectivity ratios of sulfonamides 5–8 for the inhibition of hCA II vs. hCA
with excellent hCA IX and XII inhibitory properties, and
selectivity for inhibiting the tumor-associated over cytosolic
isoforms.
IX and hCA XII, respectively
Selectivity ratio
Compound
KI(hCA II)/KI(hCA IX)
KI(hCA II)/KI(hCA XII)
Notes and references
5a
7a
5b
7b
5c
7c
5d
7d
5e
7e
6a
8a
6b
8b
6c
8c
6d
8d
6e
8e
AAZ
1.37
80.6
1.33
68.69
6.77
12.27
11.13
5.66
1.22
1.36
8.24
4.49
1.48
10.72
1.03
12.53
5.84
1.28
6.81
8.10
0.48
1.72
100.15
1.41
79
3.24
15.15
8.5
5.13
1.44
1.96
8.84
4.38
1.30
13.70
1.23
14.92
6.42
1.26
6.07
9.5
1 (a) M. Aggarwal, C. D. Boone, B. Kondeti and R. McKenna, J. Enzyme
Inhib. Med. Chem., 2013, 28, 267; (b) V. Alterio, A. Di Fiore,
K. D’Ambrosio, C. T. Supuran and G. De Simone, Chem. Rev., 2012,
112, 4421; (c) C. T. Supuran, Nat. Rev. Drug Discovery, 2008, 7, 168.
2 (a) M. Aggarwal and R. McKenna, Expert Opin. Ther. Pat., 2012,
22, 903; (b) C. T. Supuran, J. Enzyme Inhib. Med. Chem., 2012, 27, 759;
(c) C. T. Supuran, A. Scozzafava and A. Casini, Med. Res. Rev., 2003,
23, 146; (d) S. Pastorekova, S. Parkkila, J. Pastorek and C. T. Supuran,
J. Enzyme Inhib. Med. Chem., 2004, 19, 199; (e) C. T. Supuran,
A. Scozzafava and A. Casini, Development of sulfonamide carbonic
anhydrase inhibitors (CAIs), in Carbonic Anhydrase – Its Inhibitors
and Activators, ed. C. T. Supuran, A. Scozzafava and J. Conway, CRC
Press, Boca Raton, (FL), 2004, pp. 67–147.
3 M. Aggarwal, B. Kondeti and R. McKenna, Bioorg. Med. Chem., 2013,
21, 1526.
4 (a) D. Neri and C. T. Supuran, Nat. Rev. Drug Discovery, 2011, 10, 767;
(b) J. Y. Winum, A. Maresca, F. Carta, A. Scozzafava and
C. T. Supuran, Chem. Commun., 2012, 48, 8177.
5 J. K. Ahlskog, C. Schliemann, J. Mårlind, U. Qureshi, A. Ammar,
R. B. Pedleym and D. Neri, Bioorg. Med. Chem. Lett., 2009, 19, 4851.
6 (a) Y. Lou, P. C. McDonald, A. Oloumi, S. K. Chia, C. Ostlund,
A. Ahmadi, A. Kyle, U. Auf dem Keller, S. Leung, D. G. Huntsman,
B. Clarke, B. W. Sutherland, D. Waterhouse, M. B. Bally,
C. D. Roskelley, C. M. Overall, A. Minchinton, F. Pacchiano,
F. Carta, A. Scozzafava, N. Touisni, J. Y. Winum, C. T. Supuran
and S. Dedhar, Cancer Res., 2011, 71, 3364; (b) F. Pacchiano,
M. Aggarwal, B. S. Avvaru, A. H. Robbins, A. Scozzafava,
R. McKenna and C. T. Supuran, Chem. Commun., 2010, 46, 8371.
7 (a) B. L. Wilkinson, L. F. Bornaghi, T. A. Houston, A. Innocenti, C. T.
Supuran and S.-A. Poulsen, J. Med. Chem., 2006, 49, 6539; (b) B. L.
Wilkinson, L. F. Bornaghi, T. A. Houston, A. Innocenti, D. Vullo,
C. T. Supuran and S. A. Poulsen, Bioorg. Med. Chem. Lett., 2007, 17, 987.
8 (a) B. L. Wilkinson, L. F. Bornaghi, T. A. Houston, A. Innocenti,
D. Vullo, C. T. Supuran and S. A. Poulsen, J. Med. Chem., 2007,
50, 1651; (b) B. L. Wilkinson, A. Innocenti, D. Vullo, C. T. Supuran
and S. A. Poulsen, J. Med. Chem., 2008, 51, 1945; (c) M. Singer,
M. Lopez, L. F. Bornaghi, A. Innocenti, D. Vullo, C. T. Supuran and
S. A. Poulsen, Bioorg. Med. Chem. Lett., 2009, 19, 2273.
2.1
(although, not in the subnanomolar but the low nanomolar
range). As for the other isoforms discussed above, O-glycosides
and C-glycosides were present in the group of highly effective
and slightly less effective hCA IX inhibitors.
For hCA XII, the subnanomolar inhibitors (7a, 7b, 7c, 8b
and 8c) were exactly the same as the hCA IX subnanomolar
inhibitors, which is not so much unexpected considering
that the two isoforms have a rather high degree of homology
(at least in the active site amino acid residues).16 In fact the SAR
for inhibition of the two transmembrane isoforms is rather
similar (Table 1).
As hCA II is a very active and ubiquitous CA isoform, with
important physiological functions in many tissues/organs, one
of the main problems when designing new CAIs is finding
compounds which are selective for the target isoform over hCA II
(selectivity towards hCA I is a less important issue due to the fact
that hCA I is catalytically less efficient compared to hCA II, and
also notably inhibited by the chloride and bicarbonate present in
plasma).1,2 Table 2 shows thus the selectivity ratios for inhibiting
the transmembrane isoforms hCA IX and XII over the cytosolic
one hCA II. It may be seen for example that the clinically used
compound AAZ is not hCA IX selective (over hCA II) and has only
9 (a) M. Lopez, B. Paul, A. Hofmann, J. Morizzi, Q. Wu, S. A. Charman,
A. Innocenti, D. Vullo, C. T. Supuran and S. A. Poulsen, J. Med.
Chem., 2009, 52, 6421; (b) M. Lopez, L. F. Bornaghi, A. Innocenti,
D. Vullo, C. T. Supuran and S. A. Poulsen, J. Med. Chem., 2010, 53, 2913.
10 (a) M. Lopez, J. Trajkovic, L. F. Bornaghi, A. Innocenti, D. Vullo,
C. T. Supuran and S. A. Poulsen, J. Med. Chem., 2011, 54, 1481;
(b) J. C. Morris, J. Chiche, C. Grellier, M. Lopez, L. F. Bornaghi,
´
A. Maresca, C. T. Supuran, J. Pouyssegur and S. A. Poulsen, J. Med.
Chem., 2011, 54, 6905; (c) M. Lopez, H. Vu, C. K. Wang, M. G. Wolf,
G. Groenhof, A. Innocenti, C. T. Supuran and S. A. Poulsen, J. Am.
Chem. Soc., 2011, 133, 18452.
11 C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010,
49, 7798.
a limited selectivity for inhibiting hCA XII over hCA II (with a 12 (a) P. A. Colinas, R. D. Bravo, D. Vullo, A. Scozzafava and C. T. Supuran,
Bioorg. Med. Chem. Lett., 2007, 17, 5086; (b) F. Z. Smaine, J. Y. Winum,
J. L. Montero, D. Vullo, A. Scozzafava and C. T. Supuran, Bioorg. Med.
Chem. Lett., 2007, 17, 5096; (c) J. Y. Winum, A. Casini, F. Mincione,
factor of 2.1). However, many of the compounds reported in this
communication do show indeed excellent selectivity ratios for
inhibiting hCA IX over hCA II and hCA XII over hCA II. For
example, compounds 7a, 7b, 7c, 5d, 8b and 8c showed selecti-
vity ratios for inhibiting hCA IX over hCA II in the range of
10.72–80.6. As these compounds were also not highly effective as
hCA I inhibitors, they can be indeed considered as hCA IX-selective
compounds. For the inhibition of hCA XII over hCA IX, selectivity
ratios in the range of 13.70–100.15 were registered for compounds
7a, 7b, 7c, 8b and 8c (Table 2).
M. Starnotti, J.-L. Montero, A. Scozzafava and C. T. Supuran, Bioorg. Med.
Chem. Lett., 2004, 14, 225.
13 (a) J. Y. Winum, S. A. Poulsen and C. T. Supuran, Med. Res. Rev.,
2009, 29, 419; (b) J. Y. Winum, P. A. Colinas and C. T. Supuran,
Bioorg. Med. Chem., 2013, 21, 1419.
14 J. Y. Winum, M. Rami, A. Scozzafava, J. L. Montero and
C. T. Supuran, Med. Res. Rev., 2008, 28, 445.
15 M. Stiti, A. Cecchi, M. Rami, M. Abdaoui, A. Scozzafava, Y. Guari,
J. Y. Winum and C. T. Supuran, J. Am. Chem. Soc., 2008, 130, 16130.
16 V. Alterio, M. Hilvo, A. Di Fiore, C. T. Supuran, P. Pan, S. Parkkila,
A. Scaloni, J. Pastorek, S. Pastorekova, C. Pedone, A. Scozzafava,
S. M. Monti and G. De Simone, Proc. Natl. Acad. Sci. U. S. A., 2009,
106, 16233.
In conclusion, we have reported a series of sulfonamides
incorporating sugar moieties, obtained by thiol–ene click chemistry,
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5699--5701 5701