Journal of the American Chemical Society
Article
Roush, W. R.; Ess, D. Org. Lett. 2011, 13, 1478. (f) Kister, J.; Nuhant,
P.; Lira, R.; Sorg, A.; Roush, W. R. Org. Lett. 2011, 13, 1868. (g) Chen,
M.; Roush, W. R. Org. Lett. 2011, 13, 1992. (h) Chen, M.; Roush, W.
R. J. Am. Chem. Soc. 2011, 133, 5744. (i) Chen, M.; Roush, W. R. J.
Am. Chem. Soc. 2012, 134, 3925. (j) Han, J.-L.; Chen, M.; Roush, W.
R. Org. Lett. 2012, 14, 3028. (k) Chen, M.; Roush, W. R. Org. Lett.
2013, 15, 1662. (l) Chen, M.; Roush, W. R. Tetrahedron 2013, 69,
5468.
(5) (a) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (c) Fleming,
I. Org. React. 1989, 37, 57. (d) Masse, C. E.; Panek, J. S. Chem. Rev.
1995, 95, 1293. (e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev.
1997, 97, 2063. (f) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org.
React. 1997, 50, 1. (g) Lombardo, M.; Trombini, C. Chem. Rev. 2007,
107, 3843. (h) Bates, R. H.; Chen, M.; Roush, W. R. Curr. Opin. Drug
Disc. Dev. 2008, 11, 778.
ity. In this case, use of a Lewis acid was not required in order to
achieve diastereoselective allylboration reactions of the derived
intermediate 9. Finally, (E)- and (Z)-1,5-pentenediols 4 and 6
can be converted to 1,3,5-triols 12 and 14 with excellent
stereoselectivity using a hydroboration−oxidation sequence.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text and figures giving experimental procedures and spectro-
scopic data for all new compounds. This material is available
AUTHOR INFORMATION
Corresponding Author
■
(6) (a) Micalizio, G. C.; Roush, W. R. Org. Lett. 2000, 2, 461.
(b) Shotwell, J. B.; Roush, W. R. Org. Lett. 2004, 6, 3865. (c) Tinsely,
J. M.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 10818. (d) Mertz, E.;
Tinsley, J. M.; Roush, W. R. J. Org. Chem. 2005, 70, 8035. (e) Va, P.;
Roush, W. R. J. Am. Chem. Soc. 2006, 128, 15960. (f) Huh, C. W.;
Roush, W. R. Org. Lett. 2008, 10, 3371.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Dedicated to Professor Larry E. Overman on the occasion of
his 70th birthday. Financial support provided by the National
Institutes of Health (GM038436) is gratefully acknowledged.
We thank Eli Lilly for a Graduate Fellowship to M.C.
(7) (a) Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411.
(b) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533. (c) Hicks, J. D.;
Roush, W. R. Org. Lett. 2008, 10, 681. (d) Tang, S.; Xie, X.; Wang, X.;
He, L.; Xu, K.; She, X. J. Org. Chem. 2010, 75, 8234. (e) Sun, H.;
Abbott, J. R.; Roush, W. R. Org. Lett. 2011, 13, 2734. (f) Chen, M.;
Roush, W. R. Org. Lett. 2012, 14, 426. (g) Chen, M.; Roush, W. R.
Org. Lett. 2012, 14, 1556. (h) Chen, M.; Roush, W. R. Org. Lett. 2012,
14, 1880. (i) Chen, M.; Roush, W. R. J. Org. Chem. 2013, 78, 3.
(j) Nuhant, P.; Roush, W. R. J. Am. Chem. Soc. 2013, 135, 5340.
(8) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124,
11586. (b) Ishiyama, T.; Ahiko, T.; Miyaura, N. J. Am. Chem. Soc.
2002, 124, 12414. (c) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J.
Am. Chem. Soc. 2003, 125, 10160. (d) Rauniyar, V.; Hall, D. G. J. Am.
Chem. Soc. 2004, 126, 4518. (e) Rauniyar, V.; Hall, D. G. Angew.
Chem., Int. Ed. 2006, 45, 2426. (f) Rauniyar, V.; Zhai, H.; Hall, D. G. J.
Am. Chem. Soc. 2008, 130, 8481. (g) Rauniyar, V.; Hall, D. G. J. Org.
Chem. 2009, 74, 4236. For computational studies: (h) Sakata, K.;
Fujimoto, H. J. Am. Chem. Soc. 2008, 130, 12519.
REFERENCES
■
(1) (a) Roush, W. R., In Comprehensive Organic Synthesis, Trost, B.
M., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 2, p 1.
(b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (c) Denmark,
S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.;
Wiley-VCH: Weinheim, Germany, 2000; p 299. (d) Chemler, S. R.;
Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-
VCH: Weinheim, Germany, 2000; p 403. (e) Denmark, S. E.; Fu, J.
Chem. Rev. 2003, 103, 2763. (f) Lachance, H.; Hall, D. G. Org. React.
2008, 73, 1. (g) Yus, M.; Gonzal
Rev. 2011, 111, 7774. (h) Yus, M.; Gonzal
Chem. Rev. 2013, DOI: 10.1021/cr400008h.
́
es-Gom
́
ez, J. C.; Foubelo, F. Chem.
́
es-Gomez, J. C.; Foubelo, F.
́
(2) (a) Pietruszka, J.; Schone, N. Angew. Chem., Int. Ed. 2003, 42,
5638. (b) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.;
Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (c) Burgos, C. H.;
Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127,
8044. (d) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2006, 128, 74.
(e) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem.
Soc. 2007, 129, 14856. (f) Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007,
129, 3070. (g) Gonzalez, A. Z.; Roman, J. G.; Alicea, E.; Canales, E.;
Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 1269. (h) Binanzer, M.;
Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49, 4264.
(i) Robinson, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2010, 49,
6673. (j) Althaus, M.; Mahmood, A.; Suarez, J. R.; Thomas, S. P.;
Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 4025. (k) Kliman, L. T.;
Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int. Ed.
2012, 51, 521. (l) Williams, D. R.; Claeboe, C. D.; Liang, B.; Zorn, N.;
Chow, N. S. C. Org. Lett. 2012, 14, 3866. (m) Ferris, G. E.; Hong, K.;
Roundtree, I. A.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 2501. (n)
For a recent review on allenes in asymmetric synthesis: Yu, S.; Ma, S.
Angew. Chem., Int. Ed. 2012, 51, 3074.
(9) (a) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005,
46, 8981. (b) Peng, F.; Hall, D. G. Tetrahedron Lett. 2007, 48, 3305.
(c) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46, 5913.
(d) Carosi, L.; Hall, D. G. Can. J. Chem. 2009, 87, 650. (e) Chen, M.;
Roush, W. R. Org. Lett. 2010, 12, 2706.
(10) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem.
Soc. 1991, 113, 4092.
(11) (a) Hancock, K. G.; Kramer, J. D. J. Am. Chem. Soc. 1973, 95,
6463. (b) Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977,
132, 9. (c) Hoffmann, R. W.; Zeiss, H. J. J. Org. Chem. 1981, 46, 1309.
(d) Henriksen, U.; Snyder, J. P.; Halgren, T. A. J. Org. Chem. 1981, 46,
3767. (e) Wang, K. K.; Gu, Y. G.; Liu, C. J. Am. Chem. Soc. 1990, 112,
4424. (f) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46,
359. (g) Canales, E.; Gonzalez, A. Z.; Soderquist, J. A. Angew. Chem.,
́
Int. Ed. 2007, 46, 397. (h) Ess, D. H.; Kister, J.; Chen, M.; Roush, W.
R. Org. Lett. 2009, 11, 5538.
(12) (a) Brown, N. M. D.; Bladon, P. J. Chem. Soc., A 1969, 526.
(b) Smith, R. A. J.; Spencer, T. A. J. Org. Chem. 1970, 35, 3220.
(c) Christoffers, J.; Kreidler, B.; Unger, S.; Frey, W. Eur. J. Org. Chem.
2003, 2845. (d) Stefane, B. Org. Lett. 2010, 12, 2900.
(3) For recent developments for controlling the stereochemistry of
allylboration reactions of α-substituted allylboronates, see: (a) Fernan-
́
dez, E.; Pietruszka, J.; Frey, W. J. Org. Chem. 2010, 75, 5580. (b) Chen,
J. L.-Y.; Scott, H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal, V. K. J. Am.
Chem. Soc. 2013, 135, 5316. (c) Incerti−Pradillos, C. A.; Kabeshov, M.
A.; Malkov, A. V. Angew. Chem., Int. Ed. 2013, 52, 5338.
(13) (a) Noth, H.; Vahrenkamp, H. Chem. Ber. 1966, 99, 1049.
̈
(b) DeMoor, J. E.; Van der Kelen, G. P. J. Organomet, Chem. 1966, 6,
235.
(14) Roush, W. R. J. Org. Chem. 1991, 56, 4151.
(4) (a) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124,
13644. (b) Chen, M.; Handa, M.; Roush, W. R. J. Am. Chem. Soc.
2009, 131, 14602. (c) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R.
J. Am. Chem. Soc. 2009, 131, 14174. (d) Chen, M.; Ess, D. H.; Roush,
W. R. J. Am. Chem. Soc. 2010, 132, 7881. (e) Stewart, P.; Chen, M.;
(15) Depicted below are potential transition states (A−D) for the
formation of 3. Transition states A and B are alternatives to TS-1 in
Figure 3 and represent noncatalyzed transition structures. Transition
states C and D represent internally coordinated transition states,
E
dx.doi.org/10.1021/ja4033633 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX