5522 J . Org. Chem., Vol. 64, No. 15, 1999
Kiyooka and Hena
) 7.0 Hz, 2H), 4.05 (s, 1H), 3.99 (d, J ) 5.1 Hz, 1H), 3.70 (brs,
1H), 3.69 (quin, J ) 6.1 Hz, 1H), 3.01 (brs, 1H), 2.72 (dq, J )
7.0, 5.1 Hz, 1H), 2.20 (brt, J ) 7.0 Hz, 2H), 1.66 (s, 3H), 1.26
(t, J ) 7.0 Hz, 3H), 1.25 (d, J ) 7.0 Hz, 3H), 1.22-1.43 (m,
8H), 0.99 (s, 3H), 0.88 (s, 9H), 0.87 (t, J ) 7.0 Hz, 3H), 0.68 (s,
3H), 0.04 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ (ppm) 177.0,
136.4, 126.3, 86.6, 79.2. 72.0, 60.5, 42.3, 41.2, 36.7, 35.6, 31.9,
25.8, 25.0, 22.6, 22.1, 18.0, 15.5, 14.6, 14.1, 14.0, 13.3, -4.3,
-4.5. Anal. Calcd for C26H52O5Si: C, 66.05; H, 11.09. Found:
C, 66.02; H, 11.13.
Eth yl (6E,2S,3S,5R,9R)-9-(ter t-Bu tyld im eth ylsiloxy)-
3,5-d ih yd r oxy-3,5-isop r op ylid en e-2,4,4,6-tetr a m eth yltet-
r a d ec-6-en oa te (46). Using a similar procedure to that
described for the preparation of acetonide syn-38, diol 45 (472
mg, 1 mmol), acetone dimethylacetal (0.25 mL, 2.0 mmol) and
camphor-10-sulfonic acid (23 mg, 0.1 mmol) in dry acetone (5
mL) afforded acetonide 46 (502 mg, 98%) after flash column
chromatography (1% ethyl acetate/hexane) as a colorless oil.
[R]24D -5.7 (c 0.7, CHCl3); 1H NMR (CDCl3, 400 MHz) δ (ppm)
5.38 (t, J ) 7.0 Hz, 1H), 4.11 (dq, J ) 7.0, 1.0 Hz, 2H), 3.97,
(s, 1H), 3.86 (d, J ) 8.0 Hz, 1H), 3.69 (quin, J ) 5.8 Hz, 1H),
2.61 (dq, J ) 8.0, 7.0 Hz, 1H), 2.20 (t, J ) 6.3 Hz, 2H), 1.65 (s,
3H), 1.46 (s, 3H), 1.42 (s, 3H), 1.26 (t, J ) 7.0 Hz, 3H), 1.22-
1.44 (m, 8H), 1.16 (d, J ) 6.8 Hz, 6H), 0.91 (s, 3H), 0.88 (s,
9H), 0.87 (t, J ) 7.0 Hz, 3H), 0.60 (s, 3H), 0.04 (s, 3H); 13C
NMR (CDCl3, 100 MHz) δ (ppm) 176.0, 133.1, 127.0, 98.7, 83.9,
78.0, 71.9, 60.4, 40.1, 38.2, 36.9, 35.6, 31.9, 29.9, 25.9, 25.0,
22.6, 21.3, 19.4, 18.0, 15.0, 14.9, 14.7, 14.1, 14.0, -4.3, -4.5.
Anal. Calcd for C29H56O5Si: C, 67.92; H, 11.01. Found: C,
68.01; H, 11.08.
BF 3‚OEt2-Ca ta lyzed Ald ol Con d en sa tion betw een Al-
d eh yd e 32 a n d Silyl Nu cleop h ile 35. To a cooled (-78 °C)
and stirred solution of aldehyde 32 (354 mg, 0.8 mmol) in CH2-
Cl2 (4 mL) was added freshly distilled BF3‚OEt2 (0.21 mL, 1.6
mmol) dropwise, and after an interval of 10 min silyl nucleo-
phile 35 (169.5 mg, 0.9 mmol) in CH2Cl2 (1 mL) was added
dropwise. After 2 h a buffer solution (2 mL, pH 6.86) was added
to quench the reaction. Workup procedures were carried out
with separation of phases, drying over MgSO4, and evaporation
in vacuo. Flash chromatography afforded 45, 47, and 48 as a
mixture (40 mg) with a ratio of 1:1:1 (the ratio was determined
from 1H NMR) and 51 (10 mg).
E t h yl (6E,2R,3R,5R,9R)-9-(ter t-Bu t yld im et h ylsiloxy)-
3,5-d ih yd r oxy-2,4,4,6-tetr a m eth yltetr a d ec-6-en oa te (47).
1H NMR (CDCl3, 400 MHz) δ (ppm) 5.43 (t, J ) 7.0 Hz, 1H),
4.14 (q, J ) 7.0 Hz, 2H), 4.10 (d, J ) 3.4 Hz, 1H), 3.87 (dd, J
) 5.4, 5.1 Hz, 1H), 3.69 (quin, J ) 6.1 Hz, 1H), 3.50 (d, J )
5.1 Hz, 1H), 2.80 (d, J ) 3.4 Hz, 1H), 2.72 (m, 1H), 2.21 (brs,
2H), 1.70 (s, 3H), 1.30 (d, J ) 7.0 Hz, 3H), 1.26 (t, J ) 7.0 Hz,
3H), 1.22-1.43 (m, 8H), 0.93 (s, 3H), 0.88 (s, 9H), 0.87 (t, J )
7.0 Hz, 3H), 0.04 (s, 6H). Anal. Calcd for C26H52O5Si: C, 66.05;
H, 11.09. Found: C, 66.07; H, 11.12.
Eth yl (6E,2R,3S,5R,9R)-9-(ter t-Bu tyld im eth ylsiloxy)-
3,5-d ih yd r oxy-2,4,4,6-tetr a m eth yltetr a d ec-6-en oa te (48).
IR (film) 3420, 1712 cm-1; 1H NMR (CDCl3, 400 MHz) δ (ppm)
5.37 (t, J ) 7.0 Hz, 1H), 4.50 (d, J ) 8.5 Hz, 1H), 4.17 (q, J )
7.0 Hz, 2H), 3.94 (d, J ) 6.8 Hz, 1H), 3.69 (quin, J ) 6.1 Hz,
1H), 3.62 (dd, J ) 8.5, 2.2 Hz, 1H), 3.49 (d, J ) 6.8 Hz, 1H),
2.69 (dq, J ) 7.0, 2.2 Hz, 1H), 2.19 (brt, J ) 7.0 Hz, 2H), 1.70
(s, 3H), 1.34 (d, J ) 7.0 Hz, 3H), 1.29 (t, J ) 7.0 Hz, 3H), 1.22-
1.43 (m, 8H), 0.89 (s, 3H), 0.88 (s, 9H), 0.87 (t, J ) 7.0 Hz,
3H), 0.84 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); 13C NMR (CDCl3,
100 MHz) δ (ppm) 177.7, 136.4, 125.5, 85.0, 80.3, 72.0, 60.9,
42.2, 38.5, 36.7, 35.8, 31.9, 25.8, 25.1, 22.6, 22.2, 20.6, 18.0,
14.4, 14.0, 13.9, -4.3, -4.5. Anal. Calcd for C26H52O5Si: C,
66.05; H, 11.09. Found: C, 65.98; H, 11.13.
(6E,2S,3R,5R,9R)-9-(ter t-Bu t yld im et h ylsiloxy)-3-h y-
d r oxy-2,4,4,6-tr im eth yltetr a d ec-6-en -5-olid e (51). 1H NMR
(CDCl3, 400 MHz) δ (ppm) 5.46 (t, J ) 7.0 Hz, 1H), 4.29 (s,
1H), 3.72 (quin, J ) 5.5 Hz, 1H), 3.37 (dd, J ) 10.2, 4.4 Hz,
1H), 2.48 (dq, J ) 10.2, 7.0 Hz, 1H), 2.23 (brt, J ) 7.0 Hz,
2H), 1.86 (d, J ) 4.4 Hz, 1H), 1.69 (s, 3H), 1.42 (d, J ) 7.0 Hz,
3H), 1.20-1.44 (m, 8H), 0.97 (s, 3H), 0.93 (s, 3H), 0.89 (t, J )
7.0 Hz, 3H), 0.88 (s, 9H), 0.05 (s, 6H).
Eth yl (6E,2R,3S,5R,9R)-9-(ter t-Bu tyld im eth ylsiloxy)-
3,5-d ih yd r oxy-3,5-isop r op ylid en e-2,4,4,6-tetr a m eth yltet-
r a d ec-6-en oa te (52). To a solution of NaOEt (544 mg, 8.0
mmol) in ethanol (20 mL) was added 46 (410 mg, 0.8 mmol)
in EtOH (5 mL). After refluxing for 2 h, the solution was
concentrated, diluted with ether, washed with water, and dried
over MgSO4. After removal of the solvent, a crude residue was
purified by flash column chromatography (2% ethyl acetate/
hexane) to give 52 (164 mg, 40%) as a colorless oil. [R]24D +13.0
(c 0.8, CHCl3); 1H NMR (CDCl3, 400 MHz): δ (ppm) 5.39 (t, J
) 7.0 Hz, 1H), 4.12 (ddq, J ) 21.4, 10.7, 7.0 Hz, 2H), 3.94, (s,
1H), 3.70 (quin, J ) 5.8 Hz, 1H), 3.69 (d, J ) 7.8 Hz, 1H), 2.69
(dq, J ) 7.5, 7.0 Hz, 1H), 2.21 (t, J ) 6.3, 2H), 1.65 (s, 3H),
1.40 (s, 3H), 1.36 (s, 3H), 1.25 (t, J ) 7.0 Hz, 3H), 1.22-1.34
(m, 8H), 1.19 (d, J ) 7.0 Hz, 3H), 0.98 (s, 3H), 0.88 (s, 9H),
0.87 (t, J ) 7.0 Hz, 3H), 0.82 (s, 3H), 0.04 (s, 6H); 13C NMR
(CDCl3, 100 MHz) δ (ppm) 175.0, 133.0, 127.4, 98.3, 83.8, 80.4,
71.9, 60.0, 42.6, 37.4, 35.6, 31.9, 31.5, 29.8, 25.8, 25.0, 22.6,
22.0, 18.9, 18.0, 16.4, 14.8, 14.2, 14.1, 14.0, -4.4, -4.5. Anal.
Calcd for C29H56O5Si: C, 67.92; H, 11.01. Found: C, 67.85; H,
10.97.
(6E,2S,3S,5R,9R)-9-(ter t-Bu tyld im eth ylsiloxy)-3,5-d ih y-
d r oxy-3,5-isop r op ylid en e-2,4,4,6-tetr a m eth yltetr a d ec-6-
en a l (53). Employing a similar reduction procedure to that
described for aldehyde 15, ester 46 (342 mg, 1 mmol), and
DIBAL (1.2 mL, 1.2 mmol, 1 M in toluene) in CH2Cl2 (10 mL)
at -78 °C for 2 h afforded aldehyde 53 (417 mg, 89%) after
flash column chromatography (2% ethyl acetate/hexane) as a
1
colorless oil. [R]24 -5.0 (c 0.8, CHCl3); H NMR (CDCl3, 400
D
MHz) δ (ppm) 9.60 (d, J ) 2.2 Hz, 1H), 5.39 (t, J ) 7.0 Hz,
1H), 4.01 (d, J ) 4.8 Hz, 1H), 4.00 (s, 1H), 3.70 (quin, J ) 5.8
Hz, 1H), 2.54 (ddq, J ) 7.0, 4.8, 2.2 Hz, 1H), 2.21 (t, J ) 6.3
Hz, 2H), 1.66 (s, 3H), 1.45 (s, 3H), 1.38 (s, 3H), 1.20-1.44 (m,
8H), 1.16 (d, J ) 7.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 9H), 0.86 (t,
J ) 7.0 Hz, 3H), 0.71 (s, 3H), 0.04 (s, 6H); 13C NMR (CDCl3,
100 MHz) δ (ppm) 203.7, 133.0, 127.0, 98.7, 83.8, 75.5, 71.9,
46.8, 38.1, 36.9, 35.6, 31.9, 29.8, 25.9, 25.1, 22.6, 22.0, 19.2,
18.1, 15.6, 14.9, 14.0, 10.2, -4.3, -4.5. Anal. Calcd for
C
27H52O4Si: C, 69.18; H, 11.18. Found: C, 69.51; H, 11.22.
r-Tr ieth ylsilyl ter t-Bu tylim in e of P r op a n a l (54). To a
cooled (-78 °C) solution of lithium diisopropylamide (1.1 equiv)
in THF (7 mL) was added the tert-butylimine of propanal (113
mg, 1.0 mmol). The resulting yellow solution was stirred for
30 min, TESCl (0.14 mL, 1.0 mmol) was added. The resulting
mixture was stirred with gradual warming to 0 °C over a
period of 3.5 h. The reaction was quenched with water and
extracted with ether. The combined ether extracts were
washed with brine and dried over K2CO3. Removal of the ether,
followed by distillation (bp 54-55 °C/0.22 mmHg) gave 54 (141
mg, 71%) as a clear oil. IR (neat) 1657 cm-1; 1H NMR (CDCl3,
400 MHz) δ (ppm) 7.56 (d, J ) 7.0 Hz, 1H), 2.05 (quin, J ) 7.0
Hz, 1H), 1.16 (d, J ) 7.0 Hz, 3H), 1.15 (s, 9H), 0.95 (t, J ) 7.5
Hz, 9H), 0.58 (q, J ) 7.5 Hz, 6H); 13C NMR (CDCl3, 100 MHz)
δ (ppm) 29.8, 29.0, 12.8, 7.4, 6.5, 5.7, 2.2.
(2E,8E,4R,5S,7R,11R)-11-(ter t-Bu t yld im et h ylsiloxy)-
5,7-d ih yd r oxy-5,7-isop r op ylid en e-2,4,6,6,8-p en ta m eth yl-
h exa d eca -2,8-d ien a l (55). To a solution (0 °C) of lithium
diisopropylamide (1.0 equiv) was added 54 (199 mg, 1.0 mmol)
dropwise over a period of 5 min. The resulting yellow to red
solution was stirred for 15 min. The solution was cooled to
-78 °C, and aldehyde 53 (468 mg, 1.0 mmol) in THF (1 mL)
was added. The resulting mixture was stirred with gradual
warming to -20 °C over a period of 2.5 h. The reaction was
quenched with water (2 mL), and oxalic acid was added to
reach the pH at 4.5 and stirred for 30 min. The solution was
poured into brine (10 mL) and extracted with ether. The
combined ether extracts were washed with sat. aq NaHCO3
solution, dried over MgSO4, and evaporated to give a crude
material (E:Z, 16:1; 1H NMR). Purification by flash column
chromatography (1% ethyl acetate/hexane) afforded aldehyde
55 (376 mg, 74%) as a clear oil. [R]24 -5.5 (c 0.9, CHCl3); IR
D
(film) 1691 cm-1; H NMR (CDCl3, 400 MHz) δ (ppm) 9.41 (s,
1
1H), 6.44 (d, J ) 10.4 Hz, 1H), 5.38 (t, J ) 7.0 Hz, 1H), 3.93
(s, 1H), 3.69 (quin, J ) 5.6 Hz, 1H), 3.47 (d, J ) 7.0 Hz, 1H),
2.93 (ddq, J ) 10.4, 7.0, 6.8 Hz, 1H), 2.20 (brt, J ) 6.3 Hz,