ChemComm
Communication
and biodegradability of CPN-4, we are currently investigating the
delivery of small RNA molecules to target cells.
This work was supported by National Institute of Health/
National Institute of General Medical Sciences Grant No.
SC1GM092778 and R25GM61347.
Notes and references
1 I. B. Kim, H. Shin, A. J. Garcia and U. H. F. Bunz, Bioconjugate Chem.,
2007, 18, 815; X. L. Feng, Y. L. Tang, X. R. Duan, L. B. Liu and
S. J. Wang, Mater. Chem., 2010, 20, 1312; K. Lee, J. Lee, E. J. Jeong,
A. Kronk, K. S. J. Elenitoba-Johnson, M. S. Lim and J. Kim, Adv.
Mater., 2012, 24, 2479; C. F. Wu and D. T. Chiu, Angew. Chem., Int.
Ed., 2013, 52, 3086.
2 M. D. Disney, J. Zheng, T. M. Swager and P. H. Seeberger, J. Am.
Chem. Soc., 2004, 126, 13343; C. H. Fan, S. Wang, J. W. Hong,
G. C. Bazan, K. W. Plaxco and A. J. Heeger, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 6297; H. A. Ho, K. Dore, M. Boissinot, M. G. Bergeron,
R. M. Tanguay, D. Boudreau and M. J. Leclerc, J. Am. Chem. Soc., 2005,
127, 12673; K. E. Achyuthan, T. S. Bergstedt, L. Chen, R. M. Jones,
S. Kumaraswamy, S. A. Kushon, K. D. Ley, L. Lu, D. McBranch,
H. Mukundan, F. Rininsland, X. Shi, W. Xia and D. G. J. Whitten,
Mater. Chem., 2005, 15, 2648; C. J. Sun, B. S. Gaylord, J. W. Hong, B. Liu
and G. C. Bazan, Nat. Protocols, 2007, 2, 2148; B. Liu and G. C. Bazan,
Chem. Mater., 2004, 16, 4467.
3 Y. Wang, S. D. Jett, J. Crum, K. S. Schanze, E. Y. Chi and
D. G. Whitten, Langmuir, 2013, 29, 781; C. L. Zhu, Q. Yang,
F. T. Lv, L. B. Liu and S. Wang, Adv. Mater., 2013, 25, 1203;
C. F. Xing, L. B. Liu, H. W. Tang, X. L. Feng, Q. Yang, S. Wang
and G. C. Bazan, Adv. Funct. Mater., 2011, 21, 4058.
4 (a) J. H. Moon, E. Mendez, Y. Kim and A. Kaur, Chem. Commun.,
2011, 47, 8370; (b) A. T. Silva, N. Alien, C. M. Ye, J. Verchot and
J. H. Moon, BMC Plant Biol., 2010, 10, 291; X. L. Feng, F. T. Lv,
L. B. Liu, Q. Yang, S. Wang and G. C. Bazan, Adv. Mater., 2012,
24, 5428.
Fig. 3 (a) Microscopic images of HeLa cells incubated with CPN-3 and CPN-4,
followed by Golgi (red) and nucleus (blue) staining. The scale bar is 20 mm. CPN-4
exhibits higher overlap with Golgi than CPN-3. (b) Quantitative analysis of
co-localization using the PCC algorithm. Co-localization with Golgi is dependent
on the side chain and backbone structures. The error bar represents Æstandard
deviation (n = 3). *o0.05 when CPN-4 compared with CPN-2. **o0.0005 when
CPN-1 and CPN-3 compared with CPN-2 and CPN-4 (n = 3).
5 S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev., 2007,
107, 1339; C. L. Zhu, L. B. Liu, Q. Yang, F. T. Lv and S. Wang, Chem.
Rev., 2012, 112, 4687.
6 J. H. Moon, W. McDaniel, P. MacLean and L. E. Hancock, Angew.
Chem., Int. Ed., 2007, 46, 8223; C. F. Wu, C. Szymanski and
J. McNeill, Langmuir, 2006, 22, 2956; M. C. Baier, J. Huber and
S. J. Mecking, J. Am. Chem. Soc., 2009, 131, 14267.
7 R. Duncan and S. C. W. Richardson, Mol. Pharmaceutics, 2012,
9, 2380; G. Sahay, D. Y. Alakhova and A. V. J. Kabanov,
J. Controlled Release, 2010, 145, 182.
8 J. Rejman, A. Bragonzi and M. Conese, Mol. Ther., 2005, 12, 468.
9 L. Pelkmans and A. Helenius, Traffic, 2002, 3, 311.
image, three independent images of an entire cell were selected
and analysed to increase the analysis objectivity. As shown in
Fig. 3b, average PCC values were dependent on the side chain
and backbone structures of the CPNs. The CPNs with only amine
side chains exhibited higher Golgi localization than the CPNs
containing both EO and amine side chains. In addition, CPNs
fabricated with a semi-flexible CP exhibited the highest Golgi
localization. One-way ANOVA followed by the Tukey mean sepa-
ration method confirmed that Golgi co-localization of CPN-2 and
CPN-4 was statistically significant (p o 0.003) than that of CPN-1
and CPN-3. The Golgi co-localization between CPN-2 and CPN-4
was also statistically significant (p o 0.05).
10 I. A. Khalil, K. Kogure, S. Futaki and H. Harashima, J. Biol. Chem.,
2006, 281, 3544.
11 J. Lee, M. Twomey, C. Machado, G. Gomez, M. Doshi, A. J. Gesquiere
and J. H. Moon, Macromol. Biosci., DOI: 10.1002/mabi.201300030.
12 A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek,
P. Somasundaran, F. Klaessig, V. Castranova and M. Thompson,
Nature Mater., 2009, 8, 543; L. P. Fernando, P. K. Kandel, J. Yu,
J. McNeill, P. C. Ackroyd and K. A. Christensen, Biomacromolecules,
2010, 11, 2675.
In conclusion, we have demonstrated that CPNs are promising
biomaterials with tunable physicochemical properties. The side
chain and backbone structures of CPNs are closely related to
toxicity and subcellular localization. Therefore, cellular interaction
and cellular entry pathways of CPNs can be fine-tuned to improve
13 S. J. Tan, N. R. Jana, S. J. Gao, P. K. Patra and J. Y. Ying, Chem.
Mater., 2010, 22, 2239.
labelling and delivery efficiency. The excellent intrinsic fluorescent 14 Y. J. Ko, E. Mendez and J. H. Moon, Macromolecules, 2011, 44, 5527.
15 Pancake-like shapes of CPNs on a mica surface were observed from
nature of CPNs, which are useful for labelling and monitoring
atomic force microscopy images. See Macromol. Biosci., 2013, DOI:
biological substances, the tunable physicochemical properties and
10.1002/mabi.201300030.
´
the related biophysical properties make CPNs excellent bioma- 16 T. Vokata and J. H. Moon, Macromolecules, 2013, 46, 1253.
17 C.-C. Lee, Y. Liu and T. M. Reineke, Bioconjugate Chem., 2008,
terials. The concept we demonstrated here will lead to the devel-
opment of novel multifunctional materials for labelling, sensing,
19, 428.
18 K. W. Dunn, M. M. Kamocka and J. H. McDonald, Am. J. Physiol.:
and delivery. Using the highly non-destructive delivery pathway
Cell Physiol., 2011, 300, C723.
c
This journal is The Royal Society of Chemistry 2013
6050 Chem. Commun., 2013, 49, 6048--6050