ORGANIC
LETTERS
2013
Vol. 15, No. 14
3606–3609
Iron-Catalyzed Three-Component
Reaction: Multiple CÀC Bond
Cleavages and Reorganizations
Peng Wang, Saihu Liao, Jian-Bo Zhu, and Yong Tang*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Received May 23, 2013
ABSTRACT
An unexpected three-component iron-catalyzed reaction, comprising CÀC bond cleavages in two components together with three times the
cyclopropane formation and ring opening, is developed. The current reaction provides an unprecedented and efficient approach for the synthesis of
cyclopentadienes in high yields.
Reactions involving CÀC bond cleavages and reorgani-
zations frequently provide us with unusual but efficient
access to molecules that are difficult to reach by routine
methods or require multiple steps to synthesize, through
confronting the inherent inactivity of CÀC bonds.1,2 An
eminent example could be the double CÀC bond cleavage
of a cyclopentadienyl ligand, in which the resulting
two pieces, a two-carbon unit and a three-carbon unit,
were later transformed into a benzene derivative and
a pyridine derivative, respectively.3 To date, CÀC bond
cleavages and recombinations are frequently encountered
in strained-ring-opening-4 and retro-addition-initiated
tandem reactions,5 metathesis of alkenes and alkynes,6
enyne isomerization reactions,7 etc. However, in most
(4) (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(b) Pagenkopf, B. L.; Yu, M. Tetrahedron 2005, 61, 321. (c) Rubin,
M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117. (d) Lebold,
T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797. (e) Carson, C. A.;
Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
(5) (a) Cha, K.-M.; Jo, E.-A.; Jun, C.-H. Synlett 2009, 2939. (b) Lee,
D. H.; Jo, E.-A.; Park, J.-W.; Jun, C.-H. Tetrahedron Lett. 2010, 51, 160.
(c) Sugiishi, T.; Kimura, A.; Nakamura, H. J. Am. Chem. Soc. 2010, 132,
5332. (d) Roy, S.; Davydova, M. P.; Pal, R.; Gilmore, K.; Tolstikov,
G. A.; Vasilevsky, S. F.; Alabugin, I. V. J. Org. Chem. 2011, 76, 7482.
€
€ €
(e) Ojaa, T.; Klikab, K. D.; Appassamya, L.; Sinkkonenb, J.; Mantsalaa,
€
€
(1) (a) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (b) Murakami, M.;
Makino, M.; Ashida, S.; Matsuda, T. Bull. Chem. Soc. Jpn. 2006, 79,
1315. (c) Neccas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566.
P.; Niemia, J.; Metsa-Ketelaa, M. Proc. Natl. Acad. Sci. U.S.A. 2012,
109, 6024.
(6) (a) Grubbs, R. H., Eds. Handbook of metathesis: applications in
ꢀ
(d) Jun, C.-H.; Park, J.-W. Top. Organomet. Chem. 2007, 24, 117.
(e) Tobisub, M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300. (f) Ruhland,
K. Eur. J. Org. Chem. 2012, 2683.
€
organic synthesis; Wiley-VCH: Weinheim, 2003; Vol. 2. (b) Furstner, A.;
Davies, P. W. Chem. Commun. 2005, 2307. (c) Conrad, J. C.; Fogg, D. E.
Curr. Org. Chem. 2006, 10, 185. (d) Monfette, S.; Fogg, D. E. Chem. Rev.
2009, 109, 3783. (e) Nolan, S. P.; Clavier, H. Chem. Soc. Rev. 2010, 39,
3305. (f) Furstner, A. Angew. Chem., Int. Ed. 2013, 52, 2794.
(7) (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102,
813. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 453.
(c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (d) Anorbe,
L.; Domınguez, G.; Perez-Castells, J. Chem.;Eur. J. 2004, 10, 4938.
(e) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (f) Zhang, L.; Sun,
J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (g) Marco-Contelles,
J.; Soriano, E. Chem.;Eur. J. 2007, 13, 1350. (h) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (i) Michelet, V.; Toullec,
(2) For selected recent examples of CÀC activation: (a) Wentzel,
M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J. Angew. Chem., Int. Ed.
2009, 48, 6121. (b) Rathbun, C. M.; Johnson, J. B. J. Am. Chem. Soc.
2011, 133, 2031. (c) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am.
Chem. Soc. 2012, 134, 20005. (d) Xu, T.; Dong, G. Angew. Chem., Int.
Ed. 2012, 51, 7567. (e) Lutz, J. P.; Rathbun, C. M.; Stevenson, S. M.;
Powell, B. M.; Boman, T. S.; Baxter, C. E.; Zona, J. M.; Johnson, J. B.
J. Am. Chem. Soc. 2012, 134, 715. (f) Wang, J.; Chen, W.; Zuo, S.; Liu,
L.; Zhang, X.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 12334.
(g) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc.
2012, 134, 5048. (h) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem.,
Int. Ed. 2012, 51, 2485.
€
~
ꢁ
ꢁ
ꢁ~
^
P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (j) Lee, S. I.;
Chatani, N. Chem. Commun. 2009, 371. (k) Ota, K.; Lee, S. I.; Tang,
J.-M.; Takachi, T.; Nakai, H.; Morimoto, T.; Sakurai, H.; Kataoka, K.;
Chatani, N. J. Am. Chem. Soc. 2009, 131, 15203 and references cited
therein.
(3) (a) Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem.
Soc. 2003, 125, 9568. (b) Kempe, R. A. Angew. Chem., Int. Ed. 2004, 43,
1463.
r
10.1021/ol4014552
Published on Web 07/05/2013
2013 American Chemical Society