Chemical Science
Edge Article
conditions. Besides, ve previously unreported Cu–NHC
complexes could be isolated by using this approach. In an era of
Y. Monguchi, S.-I. Kondo and H. Sajiki, ChemSusChem,
2015, 8, 3773–3776.
increasing demand for the discovery of innovative organome- 20 G. N. Hermann, P. Becker and C. Bolm, Angew. Chem., Int.
tallic catalysts, as well as for efficiency and reduction of envi- Ed., 2015, 54, 7414–7417.
ronmental impact, these results are a clear indication that 21 A. Beillard, E. Golliard, V. Gillet, X. Bantreil, T.-X. Metro,
´
mechanochemistry is a good choice to achieve these goals.
J. Martinez and F. Lamaty, Chem.–Eur. J., 2015, 21, 17614–
17617.
´
22 T.-X. Metro, J. Bonnamour, T. Reidon, A. Duprez,
Acknowledgements
J. Sarpoulet, J. Martinez and F. Lamaty, Chem.–Eur. J.,
2015, 21, 12787–12796.
´
Universite de Montpellier and CNRS are acknowledged for our
´
´
funding. François Metro is gratefully acknowledged for the 23 T.-X. Metro, E. Colacino, J. Martinez and F. Lamaty, in Ball
graphical abstract production.
Milling Towards Green Synthesis: Applications, Projects,
Challenges, The Royal Society of Chemistry, 2015, ch. 6, pp.
114–150.
Notes and references
´
24 T.-X. Metro, X. J. Salom-Roig, M. Reverte, J. Martinez and
1 N. R. Rightmire and T. P. Hanusa, Dalton Trans., 2016, 45,
2352–2362.
2 G. N. Hermann, P. Becker and C. Bolm, Angew. Chem., Int.
Ed., 2016, 55, 3781–3784.
F. Lamaty, Green Chem., 2015, 17, 204–208.
25 V. Declerck, E. Colacino, X. Bantreil, J. Martinez and
F. Lamaty, Chem. Commun., 2012, 48, 11778–11780.
26 V. Declerck, P. Nun, J. Martinez and F. Lamaty, Angew.
Chem., Int. Ed., 2009, 48, 9318–9321.
ˇˇ ´
3 T. Friscic, in Ball Milling Towards Green Synthesis:
Applications, Projects, Challenges, The Royal Society of 27 F. Lazreg, F. Nahra and C. S. J. Cazin, Coord. Chem. Rev.,
Chemistry, 2015, pp. 151–189. 2015, 293–294, 48–79.
ˇˇ ´
´
4 J. G. Hernandez and T. Friscic, Tetrahedron Lett., 2015, 56, 28 J. D. Egbert, C. S. J. Cazin and S. P. Nolan, Catal. Sci. Technol.,
4253–4265. 2013, 3, 912–926.
5 S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, 29 N. Marion, in N-Heterocyclic Carbenes: From Laboratory
ˇˇ ´
T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones,
Curiosities to Efficient Synthetic Tools, The Royal Society of
Chemistry, 2011, pp. 317–344.
A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin,
W. C. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc. 30 J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya,
Rev., 2012, 41, 413–447. W. S. Hwang and I. J. B. Lin, Chem. Rev., 2009, 109, 3561–3598.
6 D. W. Peters and R. G. Blair, Faraday Discuss., 2014, 170, 83– 31 S. Dıez-Gonzalez and S. P. Nolan, Aldrichimica Acta, 2008, 41,
91. 43–51.
7 J. Bonnamour, T.-X. Metro, J. Martinez and F. Lamaty, Green 32 B. Liu, X. Ma, F. Wu and W. Chen, Dalton Trans., 2015, 44,
Chem., 2013, 15, 1116–1120. 1836–1844.
8 S.-E. Zhu, F. Li and G.-W. Wang, Chem. Soc. Rev., 2013, 42, 33 D. N. Barsoum, N. Okashah, X. Zhang and L. Zhu, J. Org.
7535–7570.
Chem., 2015, 80, 9542–9551.
9 Q. Zhang and F. Jerome, ChemSusChem, 2013, 6, 2042–2044. 34 B. R. M. Lake, E. K. Bullough, T. J. Williams, A. C. Whitwood,
´
´
´
´ ˆ
10 C. Hardacre, H. Huang, S. L. James, M. E. Migaud,
S. E. Norman and W. R. Pitner, Chem. Commun., 2011, 47,
5846–5848.
11 R. A. Haley, A. R. Zellner, J. A. Krause, H. Guan and J. Mack,
ACS Sustainable Chem. Eng., 2016, 4, 2464–2469.
12 K. Martina, L. Rinaldi, F. Baricco, L. Boffa and G. Cravotto,
Synlett, 2015, 26, 2789–2794.
M. A. Little and C. E. Willans, Chem. Commun., 2012, 48,
4887–4889.
35 B. Liu, B. Liu, Y. Zhou and W. Chen, Organometallics, 2010,
29, 1457–1464.
36 B. Liu, Q. Xia and W. Chen, Angew. Chem., Int. Ed., 2009, 48,
5513–5516.
37 G. A. Bowmaker, Chem. Commun., 2013, 49, 334–348.
ˇˇ ´
13 M. J. Rak, N. K. Saade, T. Friscic and A. Moores, Green Chem., 38 R. Schmidt, H. Martin Scholze and A. Stolle, Int. J. Ind.
2014, 16, 86–89. Chem., 2016, 7, 181–186.
14 T. L. Cook, J. A. Walker and J. Mack, Green Chem., 2013, 15, 39 See ESI† for details.
617–619.
40 Free volume is dened as the volume of the reactor minus
15 D. A. Fulmer, W. C. Shearouse, S. T. Medonza and J. Mack,
Green Chem., 2009, 11, 1821–1825.
16 M. Urano, S. Wada and H. Suzuki, Chem. Commun., 2003,
1202–1203.
the volume of the balls and the reactants.
41 D. C. Waddell, T. D. Clark and J. Mack, Tetrahedron Lett.,
2012, 53, 4510–4513.
´
´
42 S. Dıez-Gonzalez, E. D. Stevens, N. M. Scott, J. L. Petersen
¨
17 S. Immohr, M. Felderhoff, C. Weidenthaler and F. Schuth,
and S. P. Nolan, Chem.–Eur. J., 2008, 14, 158–168.
´
´
Angew. Chem., Int. Ed., 2013, 52, 12688–12691.
43 S. Dıez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed.,
18 S. Mori, W. C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai and
K. Kobayashi, Appl. Catal., A, 1996, 137, 255–268.
2008, 47, 8881–8884.
´
´
44 S. Dıez-Gonzalez, N. M. Scott and S. P. Nolan,
19 Y. Sawama, T. Kawajiri, M. Niikawa, R. Goto, Y. Yabe,
Organometallics, 2006, 25, 2355–2358.
T. Takahashi, T. Marumoto, M. Itoh, Y. Kimura, 45 J. Dupont, J. Braz. Chem. Soc., 2004, 15, 341–350.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2016