FULL PAPER
[24] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska,
P. Comte, P. Pechy, M. Gratzel, Chem. Commun. 2008, 5194–
5196.
[25] H. Im, S. Kim, C. Park, S.-H. Jang, C.-J. Kim, K. Kim, N.-G.
Park, C. Kim, Chem. Commun. 2010, 46, 1335–1337.
[26] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H.
Lee, W. Lee, J. Park, K. Kim, N.-G. Park, C. Kim, Chem. Com-
mun. 2007, 4887–4889.
[54] X. Liu, J. Liu, K. Jin, X. Yang, Q. Peng, L. Sun, Tetrahedron
2005, 61, 5655–5662.
[55]
[56]
[57]
X. Liu, J. Liu, J. Pan, S. Andersson, L. Sun, Tetrahedron 2007,
63, 9195–9205.
D. LeGourriérec, M. Andersson, J. Davidsson, E. Mukhtar, L.
Sun, L. Hammarström, J. Phys. Chem. A 1999, 103, 557–559.
H. T. Uyeda, Y. Zhao, K. Wostyn, I. Asselberghs, K. Clays, A.
Persoons, M. J. Therien, J. Am. Chem. Soc. 2002, 124, 13806–
13813.
[27] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama,
H. Arakawa, Chem. Commun. 2003, 252–253.
[58]
[59]
[60]
[61]
[62]
A. D. Hamilton, H. D. Rubin, A. B. Bocarsly, J. Am. Chem.
Soc. 1984, 106, 7255–7257.
K. Araki, P. Losco, F. M. Engelmann, H. Winnischofer, H. E.
Toma, J. Photochem. Photobiol. A: Chem. 2001, 142, 25–30.
H. Kitagishi, A. Satake, Y. Kobuke, Inorg. Chem. 2004, 43,
3394–3405.
I. Hamachi, S. Tanaka, S. Tsukiji, S. Shinkai, S. Oishi, Inorg.
Chem. 1998, 37, 4380–4388.
H. E. Toma, K. Araki, Coord. Chem. Rev. 2000, 196, 307–329.
[28] A. Kira, Y. Shibano, S. Kang, H. Hayashi, T. Umeyama, Y.
Matano, H. Imahori, Chem. Lett. 2010, 39, 448–450.
[29] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang,
C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915–1925.
[30] X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, H. Tian,
Tetrahedron 2008, 64, 345–350.
[31] Y.-S. Chen, C. Li, Z.-H. Zeng, W.-B. Wang, X.-S. Wang, B.-W.
Zhang, J. Mater. Chem. 2005, 15, 1654–1661.
[32] J. J. Cid, J. H. Yum, S. R. Jang, M. K. Nazeeruddin, E. Marti-
nez-Ferrero, E. Palomares, J. Ko, M. Gratzel, T. Torres, Angew.
Chem. 2007, 119, 8510; Angew. Chem. Int. Ed. 2007, 46, 8358–
8362.
[33] C. Li, J.-H. Yum, S.-J. Moon, A. Herrmann, F. Eickemeyer,
N. G. Pschirer, P. Erk, J. Schöneboom, K. Müllen, M. Grätzel,
M. K. Nazeeruddin, ChemSusChem 2008, 1, 615–618.
[34] M. V. Martínez-Díaz, M. Ince, T. Torres, Monatsh. Chem.
2011, 142, 699–707.
[63] L. Flamigni, F. Barigelletti, N. Armaroli, J.-P. Collin, I. M. Di-
xon, J.-P. Sauvage, J. A. G. Williams, Coord. Chem. Rev. 1999,
190–192, 671–682.
[64] J. L. Allwood, A. K. Burrell, D. L. Officer, S. M. Scott, K. Y.
Wild, K. C. Gordon, Chem. Commun. 2000, 747–748.
[65] K. Chichak, N. R. Branda, Chem. Commun. 2000, 1211–1212.
[66] E. Maligaspe, T. Kumpulainen, N. K. Subbaiyan, M. E.
Zandler, H. Lemmetyinen, N. V. Tkachenko, F. D’Souza, Phys.
Chem. Chem. Phys. 2010, 12, 7434–7444.
[35] M.-E. Ragoussi, J.-J. Cid, J.-H. Yum, G. de la Torre, D.
Di Censo, M. Grätzel, M. K. Nazeeruddin, T. Torres, Angew.
Chem. Int. Ed. 2012, 51, 4375–4378.
[36] I. López-Duarte, M. Wang, R. Humphry-Baker, M. Ince, M. V.
Martínez-Díaz, M. K. Nazeeruddin, T. Torres, M. Grätzel, An-
gew. Chem. Int. Ed. 2012, 51, 1895–1898.
[37] B. E. Hardin, J.-H. Yum, E. T. Hoke, Y. C. Jun, P. Péchy, T. s.
Torres, M. L. Brongersma, M. K. Nazeeruddin, M. Gratzel,
M. D. McGehee, Nano Lett. 2010, 10, 3077–3083.
[38] J.-H. Yum, B. E. Hardin, E. T. Hoke, E. Baranoff, S. M.
Zakeeruddin, M. K. Nazeeruddin, T. Torres, M. D. McGehee,
M. Grätzel, ChemPhysChem 2011, 12, 657–661.
[39] Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903–2934.
[40] H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 2009, 42,
1809–1818.
[67] Y. Rio, W. Seitz, A. Gouloumis, P. Vázquez, J. L. Sessler, D. M.
Guldi, T. Torres, Chem. Eur. J. 2010, 16, 1929–1940.
[68] T. Lazarides, G. Charalambidis, A. Vuillamy, M. Réglier, E.
Klontzas, G. Froudakis, S. Kuhri, D. M. Guldi, A. G. Coutso-
lelos, Inorg. Chem. 2011, 50, 8926–8936.
[69] M. Shrestha, L. Si, C.-W. Chang, H. He, A. Sykes, C.-Y. Lin,
E. W.-G. Diau, J. Phys. Chem. C 2012, 116, 10451–10460.
[70] M. T. Whited, P. I. Djurovich, S. T. Roberts, A. C. Durrell,
C. W. Schlenker, S. E. Bradforth, M. E. Thompson, J. Am.
Chem. Soc. 2011, 133, 88–96.
[71]
[72]
[73]
J. Warnan, F. Buchet, Y. Pellegrin, E. Blart, F. Odobel, Org.
Lett. 2011, 13, 3944–3947.
C. Brückner, V. Karunaratne, S. J. Rettig, D. Dolphin, Can. J.
Chem. 1996, 74, 2182–2193.
M. E. Milanesio, M. Gervaldo, L. A. Otero, L. Sereno, J. J.
Silber, E. N. Durantini, J. Porphyrins Phthalocyanines 2003, 7,
42–51.
[41] X.-F. Wang, H. Tamiaki, Energy Environ. Sci. 2010, 3, 94–106.
[42] M. V. Martinez-Diaz, G. de la Torre, T. Torres, Chem. Com-
mun. 2010, 46, 7090–7108.
[74]
[75]
[76]
W. J. Kruper, T. A. Chamberlin, M. Kochanny, J. Org. Chem.
1989, 54, 2753–2756.
J.-M. Barbe, G. Canard, S. Brandes, F. Jerome, G. Dubois, R.
Guilard, Dalton Trans. 2004, 1208–1214.
J. A. Mikroyannidis, G. Charalambidis, A. G. Coutsolelos, P.
Balraju, G. D. Sharma, J. Power Sources 2011, 196, 6622–6628.
Z. Li, R. Bittman, J. Org. Chem. 2007, 72, 8376–8382.
F. M. Engelmann, P. Losco, H. Winnischofer, K. Araki, H. E.
Toma, J. Porphyrins Phthalocyanines 2002, 6, 33–42.
L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro,
M. Cavazzini, E. Tondello, Coord. Chem. Rev. 2010, 254, 487–
505.
[43]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,
Chem. Rev. 2010, 110, 6595–6663.
[44]
K. Ladomenou, T. Lazarides, M. K. Panda, G. Charalambidis,
D. Daphnomili, A. G. Coutsolelos, Inorg. Chem. 2012, 51,
10548–10556.
[45]
[46]
M. K. Panda, K. Ladomenou, A. G. Coutsolelos, Coord.
Chem. Rev. 2012, 256, 2601–2627.
C. Siegers, J. Hohl-Ebinger, B. Zimmermann, U. Würfel, R.
Mülhaupt, A. Hinsch, R. Haag, ChemPhysChem 2007, 8,
1548–1556.
[77]
[78]
[79]
[47]
[48]
C. Y. Lee, J. T. Hupp, Langmuir 2010, 26, 3760–3765.
T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M.
Grätzel, Angew. Chem. 2010, 122, 6796; Angew. Chem. Int. Ed.
2010, 49, 6646–6649.
[80]
[81]
C. Devadoss, P. Bharathi, J. S. Moore, J. Am. Chem. Soc. 1996,
118, 9635–9644.
The Förster critical radius for photoinduced energy transfer
from [Ru(bipy)3] to the first singlet excited state of the central
porphyrin unit is estimated at ca. 19 Å using the spectroscopic
data in Table 1. This critical radius is expected to be signifi-
cantly shorter if the first triplet of the central porphyrin is
taken as the acceptor state due to poorer spectral overlap.
Thus, the observed lack of quenching could be because the ca.
16 Å distance between donor and acceptor is greater than the
Förster critical radius.
[49]
J.-H. Yum, S.-R. Jang, P. Walter, T. Geiger, F. Nuesch, S. Kim,
J. Ko, M. Gratzel, M. K. Nazeeruddin, Chem. Commun. 2007,
4680–4682.
[50]
[51]
[52]
[53]
Y. Chen, Z. Zeng, C. Li, W. Wang, X. Wang, B. Zhang, New
J. Chem. 2005, 29, 773–776.
S. Fukuda, A. Satake, Y. Kobuke, Thin Solid Films 2006, 499,
263–268.
J. M. Lintuluoto, V. V. Borovkov, Y. Inoue, Tetrahedron Lett.
2000, 41, 4781–4786.
X. Liu, J. Liu, J. Pan, R. Chen, Y. Na, W. Gao, L. Sun, Tetrahe-
dron 2006, 62, 3674–3680.
[82]
A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reib-
enspies, K. Burgess, F. Bergström, L. B. Å. Johansson, J. Org.
Chem. 1999, 64, 7813–7819.
Eur. J. Inorg. Chem. 2013, 1275–1286
1285
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim