The Journal of Organic Chemistry
Article
1
yellow oil, Rf in 10% EtOAc/hexane = 0.50. H NMR (CDCl3, 400
MHz) δ 7.87 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.23−7.15
(m, 4H), 6.82 (q, J = 1.4 Hz, 1H), 2.48 (d, J = 1.4 Hz, 3H), 2.40 (s,
3H), 2.35 (s, 3H);13C NMR (CDCl3, 100 MHz) δ 191.2, 157.3 (q),
144.5 (q), 143.3 (q), 136.6 (q), 134.0 (q), 130.5, 129.2, 128.4, 127.7,
127.2, 125.8, 124.0, 21.7 (CH3), 21.6 (CH3), 19.9 (CH3); HRMS (CI-
TOF) calcd. for C18H18O+H m/z 251.1430, found 251.1425.
(13) Paizs, B.; Simonyi, M. Chirality 1999, 11, 651−658.
(14) Carlier, P. R.; Zhao, H.; DeGuzman, J.; Lam, P. C.-H. J. Am.
Chem. Soc. 2003, 125, 11482−11483.
(15) Lam, P. C.-H.; Carlier, P. J. Org. Chem. 2005, 70, 1530−1538.
(16) Carlier, P. R.; Zhao, H.; MacQuerrie-Hunter, S. L.; DeGuzman,
J. C.; Hsu, D. C. J. Am. Chem. Soc. 2006, 128, 15215−15220.
(17) Carlier, P. R.; Sun, Y.-S.; Hsu, D. C.; Chen, Q.-H. J. Org. Chem.
2010, 75, 6588−6594.
ASSOCIATED CONTENT
* Supporting Information
(18) Lee, S.; Kamide, T.; Tabata, H.; Takahashi, H.; Shiro, M.;
Natsugari, H. Bioorg. Med. Chem. 2008, 16, 9519−9523.
(19) Simonyi, M.; Maksay, G.; Kovacs, I.; Tegyey, Z.; Parkanyi, L.;
Kalman, A.; Otvos, L. Bioorg. Chem. 1990, 18, 1−12.
(20) Fitos, I.; Visy, J.; Zsila, F.; Mady, G.; Simonyi, M. Bioorg. Med.
Chem. 2007, 15, 4857−4862.
■
S
Variable-temperature data plots for 2a−2g; H and 13C NMR
1
spectra for 2e−2g, 5, and 6; Arrhenius plots and Eyring plots
for 2a−2f; selected crystallographic data and CIF file for 2g;
additional computational details; complete ref 44. This material
(21) Gilman, N. W.; Rosen, P.; Earley, J. V.; Cook, C.; Todaro, L. J. J.
Am. Chem. Soc. 1990, 112, 3969−3978.
(22) Duffey, M. O.; Vos, T. J.; Adams, R.; Alley, J.; Anthony, J.;
Barrett, C.; Bharathan, I.; Bowman, D.; Bump, N. J.; Chau, R.; Cullis,
C.; Driscoll, D. L.; Elder, A.; Forsyth, N.; Frazer, J.; Guo, J.; Guo, L.;
Hyer, M. L.; Janowick, D.; Kulkarni, B.; Lai, S.-J.; Lasky, K.; Li, G.; Li,
J.; Liao, D.; Little, J.; Peng, B.; Qian, M. G.; Reynolds, D. J.; Rezaei,
M.; Scott, M. P.; Sells, T. B.; Shinde, V.; Shi, Q. J.; Sintchak, M. D.;
Soucy, F.; Sprott, K. T.; Stroud, S. G.; Nestor, M.; Visiers, I.;
Weatherhead, G.; Ye, Y.; Damore, N. J. Med. Chem. 2012, 55, 197−
208.
AUTHOR INFORMATION
Corresponding Author
(G.S.).
■
Notes
The authors declare no competing financial interest.
(23) Becker, A.; Kohfeld, S.; Lader, A.; Preu, L.; Pies, T.; Wieking, K.;
Ferandin, Y.; Knockaert, M.; Meijer, L.; Kunick, C. Eur. J. Med. Chem.
2010, 45, 335−342.
ACKNOWLEDGMENTS
■
We thank Dr. E. Fujita of Brookhaven National Laboratory for
the use of the Bruker Kappa Apex II diffractometer for X-ray
data collection. The experimental assistance of Nataliya Pokeza
and Benjamin Kaplan is much appreciated. We thank the
reviewers for their comments and for suggesting the method
that allowed finding the transition state of compound 2g. The
Professional Staff Congress of the City University of New York
is acknowledged for financial support of this work.
(24) Seto, M.; Aikawa, K.; Miyamoto, N.; Aramaki, Y.; Kanzaki, N.;
Takashima, K.; Kuze, Y.; Iizawa, Y.; Baba, M.; Shiraishi, M. J. Med.
Chem. 2006, 49, 2037−2048.
(25) Jackson, P. F.; Davenport, T. W.; Garcia, L.; McKinney, J. A.;
Melville, M. G.; Harris, G. G.; Chapdelaine, M. J.; Damewood, J. R.;
Pullan, L. M.; Goldstein, J. M. Bioorg. Med. Chem. Lett. 1995, 5, 3097−
3100.
(26) Cole, K. P.; Mitchell, D.; Carr, M. A.; Stout, J. R.; Belvo, M. D.
Tetrahedron: Asymmetry 2009, 20, 1262−1266.
REFERENCES
■
(27) Liu, P.; Lanza, T. J., Jr.; Chioda, M.; Jones, C.; Chobanian, H.
R.; Guo, Y.; Chang, L.; Kelly, T. M.; Kan, Y.; Palyha, O.; Guan, X.-M.;
Marsh, D. J.; Metzger, J. M.; Ramsay, K.; Wang, S.-P.; Strack, A. M.;
Miller, R. J.; Pang, J.; Lyons, K.; Dragovic, J.; Ning, J. G.; Schafer, W.
A.; Welch, C. J.; Gong, X.; Gao, Y.-D.; Hornak, V.; Ball, R. G.; Tsou,
N.; Reitman, M. L.; Wyvratt, M. J.; Nargund, R. P.; Lin, L. S. ACS Med.
Chem. Lett. 2011, 2, 933−937.
(1) Eliel, E. E.; Wilen, S. H. Stereochemistry of Carbon Compounds;
John Wiley and Sons: New York, 1994; pp 1119−1122 and 1166−
1175.
(2) Mannschreck, A.; Rissmann, G.; Vogtle, F.; Wild, D. Chem. Ber.
̈
1967, 100, 335−346.
(3) van Bergen, T. J.; Kellogg, R. M. J. Org. Chem. 1971, 36, 978−
983.
(4) Katritzky, A. R.; Aurrecoechea, J. M.; Quian, K.; Koziol, A. E.;
Palenik, G. J. Heterocycles 1987, 25, 387−391.
(5) Kowalski, D.; Erker, G.; Kotila, S. Liebigs Ann. 1996, 887−890.
(6) Brooke, G. M.; Matthews, R. S. J. Fluorine Chem. 1988, 40, 109−
117.
(7) Referring to ref 1, the (Sp) descriptor of the isomer on the left in
Scheme 1 was assigned in the following way: C2 was chosen as the
pilot atom, the atom of highest priority out of the plane formed by the
benzo group plus C5 and N. From a viewpoint looking down on the
molecule (i.e., so that C2 is between the viewer and the planar
portion), the next three atoms from the pilot atom in order of priority
are marked. Since these atoms, namely, N, C7, and C6, describe a
counterclockwise turn, the (Sp) descriptor is assigned. The assignment
is reversed when the molecule undergoes a ring-flip.
(8) Ramig, K.; Greer, E. M.; Szalda, D. J.; Razi, R.; Mahir, F.; Pokeza,
N.; Wong, W.; Kaplan, B.; Lam, J.; Mannan, A.; Missak, C.; Mai, D.;
Subramaniam, G.; Berkowitz, W. F.; Prasad, P.; Karimi, S.; Lo, N. H.;
Kudzma, L. V. Eur. J. Org. Chem. 2010, 2362−2371.
(9) Kudzma, L. V. Synthesis 2003, 1661−1666.
(28) Tabata, H.; Wada, N.; Takada, Y.; Oshitari, T.; Takahashi, H.;
Natsugari, H. J. Org. Chem. 2011, 76, 5123−5131.
(29) Welch, C. J.; Gong, X.; Schafer, W.; Chobanian, H.; Lin, L.;
Biba, M.; Liu, P.; Guo, Y.; Beard, A. Chirality 2009, 21, E105−E109.
(30) Oki, M. Top. Stereochem. 1983, 14, 1−81.
(31) Clayden, J. Ang. Chem., Int. Ed. 2009, 48, 6398−6401.
(32) Ramig, K.; Alli, S.; Cheng, M.; Leung, R.; Razi, R.; Washington,
M.; Kudzma, L. V. Synlett 2007, 2868−2870.
(33) Mukaiyama, T.; Narasaka, K. Org. Synth. 1987, 65, 6−11.
(34) Narasaka, K. Org. Synth. 1987, 65, 12−16.
(35) Streef, J. W.; van der Plas, H. C. Tetrahedron Lett. 1979, 2287−
2290.
(36) ΔG⧧ = 4.58 Tc(10.32 + log Tc/kc) cal mol−1. Here, Tc is the
c
coalescence temperature and kc is the exchange rate constant at the
coalescence temperature. kc = πΔν/√2, where Δν is the separation of
the two coalescing proton signals in Hz. See: Sandstrom, J. Dynamic
̈
NMR Spectroscopy; Academic Press: New York, 1982.
(37) Anna, J. M.; Ross, M. R.; Kubarych, K. J. J. Phys. Chem. A 2009,
113, 6544−6547.
(38) Weast, R., Ed. CRC Handbook of Chemistry and Physics, 62nd
ed.; CRC Press: Boca Raton, FL, 1981−1982; p F−43.
(39) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Herndon, VA, 2006; pp 370−
371.
(10) Blount, J. F.; Fryer, R. I.; Gilman, N. W.; Todaro, L. J. Mol.
Pharmacol. 1983, 24, 425−428.
(11) Linscheid, P.; Lehn, J.-M. Bull. Soc. Chim. Fr. 1967, 992−997.
(12) Sunjic, V.; Lisini, A.; Sega, A.; Kovac, T.; Kajfez, F.; Ruscic, B. J.
Heterocycl. Chem. 1979, 16, 757−761.
8035
dx.doi.org/10.1021/jo4013089 | J. Org. Chem. 2013, 78, 8028−8036