ChemComm
Communication
Table 3 Recycling experiment with GO–Pd17Se15 NPsa
This work was supported by projects from the Department of
Science and Technology, New Delhi-110016, India, and the
Council of Scientific and Industrial Research (CSIR), New Delhi,
India. CSIR and University Grants Commission (UGC) are
acknowledged for JRF/SRF awards to HJ, KNS, AS and OP.
Entry no
Run
Conversiond (%)
1b
2b
3c
4c
5c
1
2
3
4
5
100
96
75
53
19
Notes and references
1 (a) A. Eppler, G. Rupprechter, L. Guczi and G. A. Somorjai, J. Phys.
Chem. B, 1997, 101, 9973; (b) A. Balanta, C. Godard and C. Claver,
Chem. Soc. Rev., 2011, 40, 4973; (c) A. Fihri, M. Bouhrara,
B. Nekoueishahraki, J. M. Basset and V. Polshettiwar, Chem. Soc.
Rev., 2011, 40, 5181; (d) M. Kralik and A. Biffis, J. Mol. Catal. A:
Chem., 2001, 177, 113; (e) J. M. Thomas, B. F. G. Johnson, R. Raja,
G. Sankar and P. A. Midgley, Acc. Chem. Res., 2003, 36, 20;
( f ) M. Stratakis and H. Garcia, Chem. Rev., 2012, 112, 4469.
2 (a) J. S. Bradley, Clusters Colloids, 1994, 459; (b) H. Boennermann,
G. Braun, W. Brijoux, R. Brinkman, A. S. Tilling, S. K. Schulze and
K. Siepen, J. Organomet. Chem., 1996, 520, 143; (c) A. B. R. Mayer,
Polym. Adv. Technol., 2001, 12, 96.
3 (a) J. Watt, S. Cheong, M. F. Toney, B. Ingham, J. Cookson, P. T.
Bishop and R. D. Tilley, ACS Nano, 2010, 4, 396; (b) S. W. Kim,
M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc., 2002, 124, 7642;
(c) L. Piccolo, A. Valcarcel, M. Bausach, C. Thomazeau, D. Uziob and
G. Berhault, Phys. Chem. Chem. Phys., 2008, 10, 5504.
a
Reaction conditions: aryl bromide, 1.0 mmol; phenol, 1.2 equiv.;
K2CO3, 2.0 equiv.; GO–Pd17Se15, 1.0 mol% Pd; DMSO 4 ml; room
b
c
d
temperature. 40 min. 90 min. Yield of 94% is equivalent to 100%
conversion.
It is observed that the coupling efficiency follows the order
ArBr > ArCl. Arylhalides having electron-donating (ED) groups
(Table 2, entries 15–18) show less reactivity in comparison to
those having electron-withdrawing (EW) groups (Table 2,
entries 1–8). Further when EW groups are at a position ortho
to halo groups, the yields are less in comparison with those
substrates having a substituent at the para position (Table 2,
entries 9–12). The reactions of phenol with heteroaryl halides
(Table 2, entries 19–22) also gave good yields. When a sub-
stituent was present at a position meta to the halo group, there
was no conversion at room temperature.
Recyclability of the catalyst was studied for the coupling
reaction giving 4-phenoxybenzaldehyde at room temperature
with 1.0 mol% of Pd. The first two runs of the reaction became
almost complete in 40 minutes. Thereafter, catalytic activity
slightly dropped and for the next two runs comparable conver-
sions were observed in 90 minutes. The dramatic drop in
conversion (to 19%) was observed in the fifth run (Table 3).
The GO–Pd17Se15 NPs were found to deteriorate (see ESI,†
Fig. S6 and S7 for TEM images) after four runs, resulting in
poor conversion in the fifth one.
The C–O coupling in the present case appears to proceed
through oxidative addition of ArX to Pd(0) of NPs, as involve-
ment of Pd(0) species in such coupling has been reported
earlier.12a,16 There have been more reports on copper salt based
C–O coupling than on Pd species based reactions. In most of
the cases a ligand12c,13c was added to the Cu or Pd salt. Thus
there remains an element of ambiguity not only about real
catalytic species but also regarding the one which generates it.
In the present case atleast the pre-catalyst system is well
authenticated, which releases Pd(0), most likely a real catalyst.
Most of the catalytic systems require a temperature >80 1C.
Room temperature conversions are rare13f and the present catalyst
is novel in this sense. Palladium loading required in the case of
GO–Pd17Se15 NPs is less in comparison to those reported for most
of the known catalytic systems (2–5 mol%).12c,13e
4 (a) G. K. Rao, A. Kumar, J. Ahmed and A. K. Singh, Chem. Commun.,
2010, 46, 5954; (b) K. N. Sharma, H. Joshi, V. V. Singh, P. Singh and
A. K. Singh, Dalton Trans., 2013, 42, 3908; (c) K. N. Sharma, H. Joshi,
A. K. Sharma, O. Prakash and A. K. Singh, Organometallics, 2013,
32, 2443.
5 Y. Matsuo and T. Nakajima, Carbon, 1994, 32, 469.
6 (a) G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and
R. Mulhaupt, J. Am. Chem. Soc., 2009, 131, 8262; (b) Y. Q. He,
N. N. Zhang, Y. Liu, J. P. Gao, M. C. Yi, Q. J. Gong and H. X. Qiu,
Chin. Chem. Lett., 2012, 23, 41.
7 (a) G. I. Titelman, S. V. Karamanenko, Y. N. Novikov,
E. V. Gorozhankin and E. Z. Golosman, USSR Patent, SU 1806005,
1993; (b) A. Mastalir, Z. Kiraly, A. Patzko, I. Dekany and
P. L’Argentiere, Carbon, 2008, 46, 1631; (c) A. Mastalir, Z. Kiraly,
M. Benko and I. Dekany, Catal. Lett., 2008, 124, 34.
8 (a) R. C. Croft, Aust. J. Chem., 1956, 9, 184; (b) L. B. Ebert, J. Mol.
Catal., 1982, 15, 275; (c) J. M. Lalancette, US Patent, 3847963,
Ventron Corp., 1974; (d) A. Mastalir, F. Notheisz, M. Bartok,
T. Haraszti, Z. Kiraly and I. Dekany, Appl. Catal., A, 1996, 144, 237.
9 J. Cheng, G. Zhang, J. Du, L. Tang, J. Xu and J. Li, J. Mater. Chem.,
2011, 21, 3485.
10 S. Moussa, A. R. Siamaki, B. F. Gupton and M. S. El-Shall, ACS Catal.,
2012, 2, 145.
11 (a) N. Xia and M. Taillefer, Chem.–Eur. J., 2008, 14, 6037; (b) G. C. H.
Chiang and T. Olsson, Org. Lett., 2004, 6, 3079; (c) X. Lv and W. Bao,
J. Org. Chem., 2007, 72, 3863; (d) D. Maiti, Chem. Commun., 2011,
47, 8340; (e) D. Ma and Q. Cai, Org. Lett., 2003, 5, 3799.
12 (a) B. Schlummer and U. Scholz, Adv. Synth. Catal., 2004, 346, 1599;
(b) S. Gowrisankar, A. G. Sergeev, P. Anbarasan, A. Spannenberg,
H. Neumann and M. Beller, J. Am. Chem. Soc., 2010, 132, 11592;
(c) T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller and
J. Huang, Chem. Commun., 2009, 7330; (d) A. Dumrath, X. F. Wu,
H. Neumann, A. Spannenberg, R. Jackstell and M. Beller, Angew.
Chem., Int. Ed., 2010, 49, 8988.
13 (a) G. Nordmann and S. L. Buchwald, J. Am. Chem. Soc., 2003,
125, 4978; (b) X. Wu, B. P. Fors and S. L. Buchwald, Angew. Chem.,
Int. Ed., 2011, 50, 9943; (c) R. A. Altman and S. L. Buchwald, Org.
Lett., 2007, 9, 643; (d) L. Salvi, N. R. Davis, S. Z. Ali and
S. L. Buchwald, Org. Lett., 2012, 14, 170; (e) G. Mann, C. Incarvito,
A. L. Rheingold and J. F. Hartwig, J. Am. Chem. Soc., 1999, 121, 3224;
( f ) Q. Shelby, N. Kataoka, G. Mann and J. Hartwig, J. Am. Chem. Soc.,
2000, 122, 10718; (g) N. Kataoka, Q. Shelby, J. P. Stambuli and
J. F. Hartwig, J. Org. Chem., 2002, 67, 5553.
In summary, we have designed Pd17Se15 NPs for the first
time from a single source precursor. They were grafted onto GO
resulting in a very efficient catalyst for C–O coupling reactions of
aryl halides with phenol. The catalyst has been found to be
recyclable, and conversions in the case of a variety of substrates
have been found to be good in its presence at room temperature.
14 J. Zhang, J. Chen, M. Liu, X. Zheng, J. Ding and H. Wu, Green Chem.,
2012, 14, 912.
15 77Se{1H} NMR (DMSO-d6, 25 1C, Me2Se); (d, ppm): L, 248.1; 1 334.3.
16 J. F. Hartwig, in Handbook of Organopalladium Chemistry for Organic
Synthesis, ed. E.-i. Negishi, J. Wiley & Sons Inc., New York, 2002,
p. 1097.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7483--7485 7485