LETTER
Synthesis of 2,4,7-Triarylpyrrolo[2,3-d]pyrimidines
1385
Eds.; Wiley-VCH: Weinheim, 2004, 761. (b) Knochel, P.;
Sapountzis, I.; Gommermann, N. In Metal-Catalyzed Cross-
Coupling Reactions; Vol. 2; de Meiejere, A.; Diederich, F.,
Eds.; Wiley-VCH: Weinheim, 2004, 671. (c) Takahashi, T.;
Kanno, K. In Modern Organonickel Chemistry; Tamaru, Y.,
Ed.; Wiley-VCH: Weinheim, 2005, 41. (d) Gholap, A. R.;
Toti, K. S.; Shirazi, F.; Deshpande, M. V.; Srinivasan, K. V.
Tetrahedron 2008, 64, 10214. (e) Li, J.-H.; Zhang, X.-D.;
Xie, Y.-X. Synlett 2005, 1897. (f) Yin, J.; Rainka, M. P.;
Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
1162. (g) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron
2002, 58, 9633. (h) Miyaura, N.; Suzuki, A. Chem. Rev.
1995, 95, 2457. (i) Suzuki, A. J. Organomet. Chem. 1999,
576, 147. (j) Bellina, F.; Carpita, A.; Rossi, R. Synthesis
2004, 2419. (k) Schroter, S.; Stock, C.; Bach, T.
to cross-couplings of haloheterocycles with problematic
regio- and chemoselectivities. Further optimization of
nickel-catalyzed desulfitative C2-arylation of pyrro-
lo[2,3-d]pyrimidines with Grignard reagents bearing re-
acting groups and study of photoluminescent properties of
the synthesized compounds with estimation of the fluores-
cence quantum yields and decay times is currently being
carried out, and the results will be reported in due course.
Acknowledgment
The study was funded from the European Community’s social foun-
dation under Grant Agreement No. VP1-3.1-ŠMM-08-K-01-
004/KS-120000-1756.
Tetrahedron 2005, 61, 2245. (l) Fairlamb, I. J. S. Chem. Soc.
Rev. 2007, 36, 1036. (m) Tumkevicius, S.; Dodonova, J.
Chem. Heterocycl. Compd. 2012, 48, 258.
References and Notes
(5) Tumkevicius, S.; Dodonova, J. Synlett 2011, 1705.
(6) Lupke, U.; Seela, F. Chem. Ber. 1979, 112, 3432.
(7) (a) Kanemura, S.; Kondoh, A.; Yorimitsu, H.; Oshima, K.
Synthesis 2008, 2659. (b) Itami, K.; Yamazaki, D.; Yoshida,
J. J. Am. Chem. Soc. 2004, 126, 15396. (c) Dubbaka, S. R.;
Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674.
(1) (a) Khoje, A. D.; Kulendrn, A.; Charnock, C.; Wan, B.;
Franzblau, S.; Gundersen, L.-L. Bioorg. Med. Chem. 2010,
18, 7274. (b) Mohamed, M. S.; El-Domany, R. A.; El-
Hameed, R. H. A. Acta Pharm. 2009, 59, 145. (c) Chen, Z.;
Venkatesan, A. M.; Dehnhardt, C. M.; Ayral-Kaloustian, S.;
Brooijmans, N.; Mallon, R.; Feldberg, L.; Hollander, I.;
Lucas, J.; Yu, K.; Kong, F.; Mansour, T. S. J. Med. Chem.
2010, 53, 3169. (d) Lin, Q.; Meloni, D.; Pan, Y.; Xia, M.;
Rodgers, J.; Shepard, S.; Li, M.; Galya, L.; Metcalf, B.; Yue,
T.-Y.; Liu, P.; Zhou, J. Org. Lett. 2009, 11, 1999. (e) Wang,
T.; Ledeboer, M. W.; Duffy, J. P.; Salituro, F. G.; Pierce, A.
C.; Zuccola, H. J.; Block, E.; Shlyakter, D.; Hogan, J. K.;
Bennani, J. L. Bioorg. Med. Chem. Lett. 2010, 20, 153.
(f) Calderwood, D. J.; Johnston, D. N.; Munschauer, R.;
Rafferty, P. Bioorg. Med. Chem. Lett. 2002, 12, 1683.
(g) Gibson, C. L.; Huggan, J. K.; Kennedy, A.; Kiefer, L.;
Lee, J. H.; Suckling, C. J.; Clements, C.; Harvey, A. L.;
Hunter, W. N.; Tulloch, L. B. Org. Biomol. Chem. 2009, 7,
1829. (h) Hess, S.; Müller, C. E.; Frobenius, W.; Reith, U.;
Klotz, K.-N.; Eger, K. J. Med. Chem. 2000, 43, 4636.
(i) Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C.
T.; Gaur, S.; Jordan, A. M.; Knight, A. R.; Lerpiniere, J.;
Misra, A.; Pratt, R. M.; Roffey, J.; Stratton, G. C.; Upton, R.;
Weiss, S. M.; Williamson, D. S. Bioorg. Med. Chem. Lett.
2008, 18, 2924. (j) Naus, P.; Pohl, R.; Votruba, I.; Dzubak,
P.; Hajduch, M.; Ameral, R.; Birkus, G.; Wang, T.; Ray, A.
S.; Mackman, R.; Cihlar, T.; Hocek, M. J. Med. Chem. 2010,
53, 460. (k) Perlikova, P.; Pohl, R.; Votruba, I.; Shih, R.;
Birkus, G.; Cihlar, T.; Hocek, M. Bioorg. Med. Chem. 2011,
19, 229.
(2) (a) McKeen, C. M.; Brown, L. J.; Nicol, J. T. G.; Mellor, J.
M.; Brown, T. Org. Biomol. Chem. 2003, 1, 2267. (b) Saito,
Y.; Miyauchi, Y.; Okamoto, A.; Saito, I. Chem. Commun.
2004, 1704. (c) Meng, Q.; Kim, D. H.; Bai, X.; Bi, L.; Turro,
N. J.; Ju, J. J. Org. Chem. 2006, 71, 3248. (d) Varghese, R.;
Gajula, P. K.; Chakraborty, T. K.; Wagenknecht, H.-A.
Synlett 2009, 3252. (e) Riedl, J.; Horáková, P.; Sebest, P.;
Pohl, R.; Havran, L.; Fojta, M.; Hocek, M. Eur. J. Org.
Chem. 2009, 3519. (f) Harvey, J. H.; Butler, B. K.; Trauner,
D. Tetrahedron Lett. 2007, 48, 1661. (g) Singer, M.;
Jäschke, A. J. Am. Chem. Soc. 2010, 132, 8372.
(3) (a) Tumkevicius, S.; Dodonova, J.; Kazlauskas, K.;
Masevicius, V.; Skardziute, L.; Jursenas, S. Tetrahedron
Lett. 2010, 51, 3902. (b) Dodonova, J.; Skardziute, L.;
Kazlauskas, K.; Jursenas, S.; Tumkevicius, S. Tetrahedron
2012, 68, 329.
(d) Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.;
Junjappa, H. Org. Lett. 2005, 7, 2169. (e) Milburn, R. R.;
Snieckus, V. Angew. Chem. Int. Ed. 2004, 43, 888.
(8) 7-(tert-Butoxycarbonyl)-4-chloro-2-methylthio-7H-
pyrrolo[2,3-d]pyrimidine (2)
To a solution of 1 (100 mg, 0,50 mmol) in anhyd CH2Cl2 (2
mL) DIPEA (77.4 mg, 0.60 mmol), DMAP (12.2 mg, 0.10
mmol), and Boc2O (164 mg, 0,752 mmol) was added. The
reaction mixture was stirred at r.t. for 30 min. After
evaporation of CH2Cl2 the residue was dissolved in CHCl3
and filtered through a layer of silica gel. After evaporation of
the CHCl3 the solid was recrystallized to give 142 mg (95%)
of compound 2; mp 104–105 °C (from 2-PrOH). IR (KBr):
ν = 1748 (C=O) cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.71
[s, 9 H, C(CH3)3], 2.67 (s, 3 H, SCH3), 6.57 (d, J = 4 Hz, 1
H, 5-H), 7.61 (d, J = 4 Hz, 1 H, 6-H). 13C NMR (75 MHz,
CDCl3): δ = 14.9, 28.4, 85.8, 103.1, 116.3, 126.2, 147.9,
152.7, 152.8, 167.6. Anal. Calcd for C12H14ClN3O2S: C,
48.08; H, 4.71; N, 14.02. Found: C, 48.07; H, 4.73; N, 13.68.
(9) Representative Procedure for the Preparation of 4-Aryl-
7-tert-butoxycarbonyl-2-methylthio-7H-pyrrolo[2,3-
d]pyrimidines 3a–c
Compound 3a: A solution of 2 (100 mg, 0.33 mmol) in
anhyd dioxane (2 mL) was flushed with argon and 2-
biphenyldicyclohexylphosphine (4 mol%) and Pd(OAc)2 (2
mol%) were added. The mixture was stirred for 10 min, then
phenylboronic acid (48.8 mg, 0.4 mmol) and K3PO4 (169.8
mg, 0.8 mmol) were added under argon flow, and the
reaction mixture was refluxed for 1 h. After cooling the
solvent was removed to dryness, the residue dissolved in
H2O (5 mL), and the solution obtained was extracted with
CHCl3. The extract was dried over Na2SO4, filtered, and the
CHCl3 was removed on the rotary evaporator. The residue
was purified by column chromatography (eluent CHCl3) to
give 93.5 mg (83%) of compound 3a; mp 82.5–83 °C. 1H
NMR (300 MHz, CDCl3): δ = 1.72 [s, 9 H, C(CH3)3], 2.73
(s, 3 H, SCH3), 6.78 (d, J = 4 Hz, 1 H, 5-H), 7.52–7.54 (m, 3
H, ArH), 7.62 (d, J = 4 Hz, 1 H, 6-H), 8.05 (d, J = 9 Hz, 2 H,
ArH). 13C NMR (75 MHz, CDCl3): δ = 14.9, 85.2, 104.3,
125.9, 129.0, 129.2, 130.6, 137.5, 148.4, 153.8, 158.6,
167.4. Anal. Calcd for C18H19N3O2S: C, 63.32; H, 5.61; N,
12.31. Found: C, 62.95; H, 5.63; N, 12.03.
(4) (a) Anctil, E. J.-G.; Snieckus, V. In Metal-Catalyzed Cross-
Coupling Reactions; Vol. 2; de Meiejere, A.; Diederich, F.,
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1383–1386