LETTER
Functionalized Ionic Liquid Synthesis
1431
Org. Chem. 2003, 68, 4281. (e) Wheeler, C.; West, K. N.;
Liotta, C. L.; Eckert, C. A. Chem. Commun. 2001, 887.
(3) (a) Garcia, S.; Lourenco, N. M. T.; Lousa, D.; Sequeira, A.
F.; Mimoso, P.; Cabral, J. M. S.; Afonso, C. A. M.;
Barreiros, S. Green Chem. 2004, 6, 466. (b) Chiappe, C.;
Leandri, E.; Lucchesi, S.; Pieraccini, D.; Hammock, B. D.;
Morisseau, C. J. Mol. Catal. B: Enzym. 2004, 27, 243.
(c) Persson, M.; Bornscheuer, U. T. J. Mol. Catal. B: Enzym.
2003, 22, 21. (d) Kim, K.-W.; Song, B.; Choi, M.-Y.; Kim,
M.-J. Org. Lett. 2001, 3, 1507.
(4) (a) Matsumoto, M.; Inomoto, Y.; Kondo, K. J. Membr. Sci.
2005, 246, 77. (b) Scovazzo, P.; Kieft, J.; Finan, D. A.;
Koval, C.; DuBois, D.; Noble, R. J. Membr. Sci. 2004, 238,
57. (c) Fortunato, R.; Afonso, C. A. M.; Reis, M. A. M.;
Crespo, J. G. J. Membr. Sci. 2004, 242, 197. (d) Branco, L.
C.; Crespo, J. G.; Afonso, C. A. M. Angew. Chem. 2002,
114, 2895.
(5) (a) Arce, A.; Earle, M. J.; Rodriguez, H.; Seddon, K. R. J.
Phys. Chem. B 2007, 111, 4732. (b) Visser, A. E.; Swatloski,
R. P.; Rogers, R. D. Green Chem. 2000, 2, 1. (c) Huddleston,
J. G.; Rogers, R. D. Chem. Commun. 1998, 1765.
(6) (a) Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792.
(b) Baleizao, C.; Gigante, B.; Garcia, H.; Corma, A. Green
Chem. 2002, 4, 272. (c) Earle, M. J.; Seddon, K. R. Pure
Appl. Chem. 2000, 72, 1391.
(7) (a) Gurkan, B. E.; de la Fuente, J. C.; Mindrup, E. M.; Ficke,
L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.;
Brennecke, J. F. J. Am. Chem. Soc. 2010, 132, 2116.
(b) Gurkan, B.; Goodrich, B. F.; Mindrup, E. M.; Ficke, L.
E.; Massel, M.; Seo, S.; Senftle, T. P.; Wu, H.; Glaser, M. F.;
Shah, J. K.; Maginn, E. J.; Brennecke, J. F.; Schneider, W.
F. J. Phys. Chem. Lett. 2010, 1, 3494. (c) Anthony, J. L.;
Anderson, J. L.; Maginn, E. J.; Brennecke, J. F. J. Phys.
Chem. B 2005, 109, 6366.
(8) (a) Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.;
Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res.
2007, 46, 5380. (b) Bates, E. D.; Mayton, R. D.; Ntai, I.;
Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926.
raalkyl phosphonium bromides, the corresponding tri-
azolide ILs 4n–p were obtained in yields ranging from
70–96% on 120 g scale (Table 4, entries 1–3).
Table 4 Large-Scale Production of Ionic Liquidsa
H
N
(R1)3P(R2)
NaOMe/MeOH
N
N
N
N
then Br[(R1)3P(R2)]
N
4n–p
1i
Entry
R1
R2
IL
Yield (%)b
1
2
3
CH3(CH2)5
CH3(CH2)3
CH3CH2
CH3(CH2)13
CH3(CH2)11
CH3(CH2)5
4n
4o
4p
93
96
70
a Conditions: 1i (2.0 equiv), 2 (1.0 equiv), and NaOMe (2.0 equiv) in
MeOH (1.0 M), 72 h.
b Isolated yields
In conclusion, we have developed a complementary meth-
od for the synthesis of functionalized phosphonium and
N-heterocyclic cation based ILs that relies on the ease of
Na+ ion cation exchange. The method described herein is
applicable to a diverse array of anionic and cationic com-
ponents containing an assortment of different functional
groups. This protocol allows for the direct use of phospho-
nium halides that obviates the conventional requirement
of phosphonium hydroxide synthesis and avoids the com-
plications associated with excessive solvent, reagents, and
extended reaction times. The reaction is amenable to
large-scale production and requires a simple aqueous
wash or filtration to obtain the desired ILs in high levels
of purity. Given the ever-increasing interest in functional-
ly diverse ILs, this method should facilitate the discovery
of new applications for this important class of materials.
(c) Brennecke, J. F.; Maginn, E. J. AlChE J. 2001, 47, 2384.
(9) (a) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.;
Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126,
5300. (b) Anthony, J. L.; Maginn, E. J.; Brennecke, J. F.
J. Phys. Chem. B 2002, 106, 7315.
(10) (a) Ohno, H.; Fukumoto, K. Acc. Chem. Res. 2007, 40, 1122.
(b) Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem.
Soc. 2005, 127, 2398.
(11) (a) Smiglak, M.; Hines, C. C.; Wilson, T. B.; Singh, S.;
Vincek, A. S.; Kirichenko, K.; Katritzky, A. R.; Rogers, R.
D. Chem. Eur. J. 2010, 16, 1572. (b) Smiglak, M.; Bridges,
N. J.; Dilip, M.; Rogers, R. D. Chem. Eur. J. 2008, 14,
11314. (c) Katritzky, A. R.; Singh, S.; Kirichenko, K.;
Smiglak, M.; Holbrey, J. D.; Reichert, W. M.; Spear, S. K.;
Rogers, R. D. Chem. Eur. J. 2006, 12, 4630.
Acknowledgment
The authors thank Professor Joan F. Brennecke (University of Notre
Dame) for helpful discussions and the Department of Energy,
Advanced Research Projects-Energy, the University of Notre
Dame Sustainable Energy Initiative, and the Center for Sustainable
Energy at Notre Dame (cSEND) for support.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
(12) General Procedures for IL Synthesis
Method A: A clean, oven-dried round-bottom flask was
charged with NaH (1.0 equiv, 1.0 mmol), flushed with N2,
then suspended in THF (4 mL). A solution of 1 (1 equiv, 1.0
mmol) in THF (1 mL) was added dropwise over 30 min, then
stirred until evolution of H2 ceased. A solution of 2 or 3 (1
equiv, 1.0 mmol) in THF (5 mL) was added and the reaction
monitored by 1H NMR (DMSO-d6). The resulting mixture
was diluted with H2O (10 mL) and extracted with EtOAc (3
× 15 mL). The combined organic fractions were
concentrated under reduced pressure to afford the desired IL.
Method B: A clean, oven-dried round-bottom flask was
charged with NaOMe/MeOH (0.4 mL of 3.0 M, 1.2 mmol).
A solution of 1i (1.0 equiv, 1.2 mmol) in MeOH (5 mL) was
References and Notes
(1) (a) Tang, S.; Baker, G. A.; Zhao, H. Chem. Soc. Rev. 2012,
41, 4030. (b) Buzzeo, M. C.; Evans, R. G.; Compton, R. G.
ChemPhysChem 2004, 5, 1106. (c) Gordon, C. M. Appl.
Catal., A 2001, 222, 101. (d) Wasserscheid, P.; Keim, W.
Angew. Chem. Int. Ed. 2000, 39, 3772.
(2) (a) Kumar, V.; Talisman, I. J.; Bukhari, O.; Razzaghy, J.;
Malhotra, S. V. RSC Adv. 2011, 1, 1721. (b) Bender, J.;
Jepkens, D.; Hüsken, H. Org. Process Res. Dev. 2010, 14,
716. (c) Yadav, G. D.; Motirale, B. G. Ind. Eng. Chem. Res.
2008, 47, 9081. (d) Kim, D. W.; Song, C. E.; Chi, D. Y. J.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1428–1432