LETTER
Functionalizations of Alkynes Using TsNBr2
1561
Jutand, A. Acc. Chem. Res. 2000, 33, 314. (d) Bettinger, H.
F.; Filthaus, M. J. Org. Chem. 2007, 72, 9750.
(e) Uchiyama, M.; Furuyama, T.; Kobayashi, M.;
Matsumoto, Y.; Tanaka, K. J. Am. Chem. Soc. 2006, 128,
8404. (f) Boukouvalas, J.; Loach, R. P. J. Org. Chem. 2008,
73, 8109.
R1
R2
1
TsNBr2 (2)
TsNBr2 (2)
(8) Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull.
Chem. Soc. Jpn. 1987, 60, 1159.
Br
(9) Paul, S.; Gupta, V.; Gupta, R.; Loupy, A. Tetrahedron Lett.
2003, 44, 439.
(10) Ye, C.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561.
(11) Pandit, P.; Gayen, K. S.; Khamarui, S.; Chatterjee, N.; Maiti,
D. K. Chem. Commun. 2011, 47, 6933.
R1
Br
R2
R2
R1
7
8
vinyl bromonium cation
(when R1 = aryl, R2 = H)
cyclic bromonium cation
(when R1 = alkyl, R2 = H)
(12) Schmidt, R.; Stolle, A.; Ondruschka, B. Green Chem. 2012,
14, 1673.
R3CO2H 4
R3CO2H 4
(13) (a) Barluenga, J.; Rodriguez, M. A.; Campos, P. J. J. Org.
Chem. 1990, 55, 3104. (b) Chen, Z.; Li, J.; Jiang, H.; Zhu, S.;
Li, Y.; Qi, C. Org. Lett. 2010, 12, 3262. (c) Chen, X.; Chen,
D.; Lu, Z.; Kong, L.; Zhu, G. J. Org. Chem. 2011, 76, 6338.
(14) Kharasch, M. S.; Priestley, H. N. J. Am. Chem. Soc. 1939,
61, 3425.
R2
Br
R3
O
R3
O
R2
Br
R1
O
R1
O
(15) (a) Daniher, F. A.; Butler, P. E. J. Org. Chem. 1968, 33,
4336. (b) Terauchi, H.; Kowata, K.; Minematsu, T.;
Takemura, S. Chem. Pharm. Bull. 1977, 25, 556.
(c) Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982,
104, 2444. (d) Li, G.; Wei, H.-X.; Kim, S. H.; Neighbors, M.
Org. Lett. 1999, 1, 395. (e) Li, G.; Wei, H.-X.; Kim, S. H.
Org. Lett. 2000, 2, 2249. (f) Wei, H.-X.; Kim, S. H.; Li, G.
Tetrahedron 2001, 57, 3869. (g) Wei, H.-X.; Kim, S. H.; Li,
G. Tetrahedron 2001, 57, 8407. (h) Xu, X.; Kotti, S. R. S. S.;
Liu, J.; Cannon, J. F.; Headley, A. D.; Li, G. Org. Lett. 2004,
6, 4881.
(16) (a) Phukan, P.; Chakraborty, P.; Kataki, D. J. Org. Chem.
2006, 71, 7533. (b) Saikia, I.; Phukan, P. Tetrahedron Lett.
2009, 50, 5083. (c) Saikia, I.; Chakraborty, P.; Phukan, P.
ARKIVOC 2009, (xiii), 281. (d) Saikia, I.; Kashyap, B.;
Phukan, P. Synth. Commun. 2010, 40, 2647. (e) Saikia, I.;
Kashyap, B.; Phukan, P. Chem. Commun. 2011, 47, 2967.
(f) Saikia, I.; Rajbonshi, K. K.; Phukan, P. Tetrahedron Lett.
2012, 53, 758. (g) Borah, A. J.; Phukan, P. Chem. Commun.
2012, 48, 5491.
(17) Shen, R.; Huang, X. Org. Lett. 2009, 11, 5698.
(18) (a) Singh, A. K.; Chawla, R.; Rai, A.; Yadav, L. D. S. Chem.
Commun. 2012, 48, 3766. (b) Chawla, R.; Kapoor, R.;
Singh, A. K.; Yadav, L. D. S. Green Chem. 2012, 14, 1308.
(c) Singh, A. K.; Yadav, L. D. S. Synthesis 2012, 44, 591.
(d) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Tetrahedron
Lett. 2012, 53, 3382. (e) Singh, A. K.; Chawla, R.; Yadav, L.
D. S. Synthesis 2012, 44, 2353. (f) Chawla, R.; Singh, A. K.;
Yadav, L. D. S. Tetrahedron 2013, 69, 1720.
5, 6
6
mixture of Z- and E-isomers
E-isomer
Scheme 2 Plausible mechanism for the formation of β-bromoenol
alkanoates
References and Notes
(1) For recent selected examples of difunctionalization of
terminal alkyne, see: (a) Goossen, L. J.; Rodriguez, N.;
Goossen, K. Angew. Chem. Int. Ed. 2009, 48, 9592.
(b) Mizuno, A.; Kusama, H.; Iwasawa, N. Angew. Chem. Int.
Ed. 2009, 48, 8318. (c) Sha, F.; Huang, X. Angew. Chem.
Int. Ed. 2009, 48, 3458. (d) Ye, L.; Cui, L.; Zhang, G.;
Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (e) Dutta, B.;
Gilboa, N.; Marek, I. J. Am. Chem. Soc. 2010, 132, 5588.
(f) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28.
(g) Kuang, J.; Ma, S. J. Am. Chem. Soc. 2010, 132, 1786.
(2) (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346,
889. (b) Welch, C. J.; Albaneze-Walker, J.; Leonard, W. R.;
Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D.
J.; Spencer, S.; Bu, X.; Wang, T. Org. Process Res. Dev.
2005, 9, 198. (c) Qiu, F.; Norwood, D. L. J. Liq.
Chromatogr. Relat. Technol. 2007, 30, 877.
(3) Palisse, A.; Kirsch, S. F. Org. Biomol. Chem. 2012, 10,
8041.
(4) (a) Ahluwalia, V. K.; Mehta, B.; Kumar, R. Synth. Commun.
1989, 19, 619. (b) Prakash, R.; Kumar, A.; Aggarwal, R.;
Prakash, O.; Singh, S. P. Synth. Commun. 2007, 37, 2501.
(c) Duggan, P. J.; Liepa, A. J.; O’Dea, L. K.; Tranberg, C. E.
Org. Biomol. Chem. 2007, 5, 472.
(5) For selected examples, see: (a) Bruneau, C.; Dixneuf, P. H.
Chem. Commun. 1997, 507. (b) Goossen, L. J.; Paetzold, J.
Angew. Chem. Int. Ed. 2004, 43, 1095. (c) Zhang, D.; Ready,
J. M. Org. Lett. 2005, 7, 5681. (d) DeBergh, J. R.; Spivey, K.
M.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 7828.
(e) Tang, W.; Liu, D.; Zhang, X. Org. Lett. 2003, 5, 205.
(6) Haloenol acetates are known to be effective precursors of α-
keto dianions, see: (a) Kowalski, C. J.; Haque, M. S. J. Org.
Chem. 1985, 50, 5140. (b) Kowalski, C. J.; O’Dowd, M. L.;
Burke, M. C.; Fields, K. W. J. Am. Chem. Soc. 1980, 102,
5411. (c) Kowalski, C. J.; Haque, M. S.; Fields, K. W. J. Am.
Chem. Soc. 1985, 107, 1429.
(19) Schmid, G. H.; Modro, A.; Yates, K. J. Org. Chem. 1980, 45,
665.
(20) General Procedure for the Synthesis of α,α-
Dibromoalkanones 3
A mixture of alkyne 1 (1.0 mmol) and TsNBr2 (2, 2.0 mmol)
in MeCN (2 mL) with H2O (0.2 mL) was stirred at r.t. for 3–
10 min (Table 2). After completion of the reaction
(monitored by TLC), H2O was added and the mixture was
extracted with EtOAc (3 × 5 mL). The combined organic
phases were dried over anhyd Na2SO4, filtered, and
concentrated under reduced pressure. The resulting crude
product was purified by silica gel column chromatography
using a mixture of EtOAc–n-hexane (1:99) as eluent to
afford an analytically pure sample of α,α-dibromoalkanones
3 (Table 2).
(7) For recent selected examples, see: (a) Corbet, J.-P.;
Mignani, G. Chem. Rev. 2006, 106, 2651. (b) Cahiez, G.;
Moyeux, A. Chem. Rev. 2010, 110, 1435. (c) Amatore, C.;
Characterization Data of Representative Compounds
Compound 3a: viscous liquid; yield 87%. IR (neat):
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1558–1562