very high efficiency that is attributed to the fully rigidified
backbones of the corresponding oligomeric precursors.10
These macrocycles exhibited novel properties.12 For exam-
ple, macrocycles 1, with their noncollapsible cavity having
numerous hydrogen bond acceptors, showed very high
selectivity toward the guanidinium ion.13 Macrocycles 1
formed transmembrane single ion channels with high con-
ductance, presumably due to their columnar stacking.14 The
strong columnar aggregation of 1 was confirmed by our
recent structural studies.15
dispersed in a wide concentration range in CDCl3, suggest-
ing that these molecules, with secondary amide side chains
being attached to their peripheries, abolished the otherwise
strong aggregation observed for 1.
Besides their efficient formation, macrocycles1 and their
larger analogs offer multiple sites, including side chains
and peripheral aromatic hydrogens, that are amenable
to various structural modifications. In an attempt to better
control the assembly of these cyclic compounds, we de-
signed and prepared macrocycles 2 in which a secondary
amide group was placed in between the two alkoxy groups
of each of the three diaminobenzene residues.16 The intro-
duced secondary amide groups, being sandwiched in be-
tween the alkoxy side chains and thus perpendicular to the
plane of the benzene rings to which they are attached,
should engage in intermolecular H-bonding interactions
that force 2 to stack into H-bonded columns. In contrast to
such an expectation, the 1H NMR signals of 2 remain well
Despite their drastically different propensity for aggre-
gation, macrocycles 1 and 2 have very similar backbones
that are rigidified by intramolecular three-center H-bonds and
the same, nondeformable inner cavity. Indeed, with a cavity
that is rich in amide O-atoms, macrocycles 2, like 1, also
complex the guanidinium ion with very high selectivity,16
suggesting that additional amide side chains did not alter
the property of the inner cavities of these macrocycles.
The unexpected lack of aggregation for 2 indicates that
even a modest structural variation could result in a drastic
change in properties, which prompted us to explore addi-
tional modifications on these macrocycles. For example,
removing some of the alkoxy side chains from 1 (or 2)
would reduce the number of intramolecular H-bonds,
leading to oligoamide backbones with increased rotational
freedom and also allowing the attachment of various side
chains onto the benzene residues. This may lead to macro-
cycles with novel behavior.
Based on these considerations, we designed macrocycles
3, which can be regarded as being derived from 1 by
removing the alkoxy groups, i.e., the corresponding intra-
molecular H-bonds, away from the diaminobenzene residues
while attaching additional amide side chains. Macrocycles 3
may also be regarded as being derived from 2 by removing
the alkoxy groups away from the diaminobenzene residues
of the latter. The backbone amide H-atoms of 3 should
still be involved in intramolecular H-bonds with the remain-
ing alkoxy oxygens, while the side chain amide groups of 3
should be able to engage in intermolecular H-bonding.17
The preparation of 3 was first attempted by treating the
corresponding monomeric diacid chloride and diamines
based on the similar one-pot procedures we reported for
preparing 1.5 In contrast to the efficient formation of 1, the
attempted one-pot reaction failed to yield 3 in any mean-
ingful yields. This result indicates that, without the kind of
H-bond-constrained conformations18 that are characteristic
(5) Yuan, L. H.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D. G.;
Guo, H.; Gong, B. J. Am. Chem. Soc. 2004, 126, 11120.
(6) (a) Jiang, H.; Leger, J. M.; Guionneau, P.; Huc, I. Org. Lett. 2004,
6, 2985. (b) Campbell, F.; Plante, J.; Carruthers, C.; Hardie, M. J.; Prior,
T. J.; Wilson, A. J. Chem. Commun. 2007, 2240. (c) Zhu, Y. Y.; Li, C.; Li,
G. Y.; Jiang, X. K.; Li, Z. T. J. Org. Chem. 2008, 73, 1745. (d) Li, F.;
Gan, Q.; Xue, L.; Wang, Z. M.; Jiang, H. Tetrahedron Lett. 2009, 50,
2367. (e) Qin, B.; Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X. Y.;
Li, Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem. Soc.
2010, 132, 9564.
(7) Ferguson, J. S.; Yamato, K.; Liu, R.; He, L.; Zeng, X. C.; Gong,
B. Angew. Chem., Int. Ed. 2009, 48, 3150.
(8) Frischmann, P. D.; Facey, G. A.; Ghi, P. Y.; Gallant, A. J.; Bryce,
D. L.; Lelj, F.; MacLachlan, M. J. J. Am. Chem. Soc. 2010, 132, 3893.
(9) (a) Yamaguchi, Y.; Yoshida, Z.-I. Chem.;Eur. J. 2003, 9, 5430.
(b) Xing, L. Y.; Ziener, U.; Sutherland, T. C.; Cuccia, L. A. Chem.
Commun. 2005, 5751. (c) He, L.; An, Y.; Yuan, L. H.; Yamato, K.; Feng,
W.; Gerlitz, O.; Zheng, C.; Gong, B. Chem. Commun. 2005, 3788. (d) He,
L.; An, Y.; Yuan, L. H.; Feng, W.; Li, M. F.; Zhang, D. C.; Yamato, K.;
Zheng, C.; Zeng, X. C.; Gong, B. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
10850. (e) Zhang, A. M.; Han, Y. H.; Yamato, K.; Zeng, X. C.; Gong, B.
Org. Lett. 2006, 8, 803. (f) Sessler, J. L.; Tomat, E.; Lynch, V. M. Chem.
Commun. 2006, 4486. (g) Holub, J. M.; Jang, H. J.; Kirshenbaum, K.
Org. Lett. 2007, 9, 3275. (h) Geng, M. W.; Zhang, D. C.; Wu, X. X.; He,
L.; Gong, B. Org. Lett. 2009, 11, 923. (i) Wu, Z. H.; Hu, T.; He, L.; Gong,
B. Org. Lett. 2012, 14, 2504–2507.
(10) Feng, W.; Yamato, K.; Yang, L. Q.; Ferguson, J.; Zhong, L. J.;
Zou, S. L.; Yuan, L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2009,
131, 2629.
(11) (a) Yang, L. Q.; Zhong, L. J.; Yamato, K.; Zhang, X. H.; Feng,
W.; Deng, P. C.; Yuan, L. H.; Zeng, X. C.; Gong, B. New J. Chem. 2009,
729. (b) Zou, S. L.; He, Y. Z.; Yang, Y. N.; Zhao, Y.; Yuan, L. H.; Feng,
W.; Yamato, K.; Gong, B. Synlett 2009, 1437.
(12) (a) Yamato, K.; Kline, M.; Gong, B. Chem. Commun. 2012, 48,
12142. (b) Gong, B.; Shao, Z. F. Acc. Chem. Res. 2013, ASAP article.
DOI: 10.1021/ar400030e.
(13) Sanford, A. R.; Yuan, L. H.; Feng, W.; Yamato, K.; Flowers,
R. A.; Gong, B. Chem. Commun. 2005, 4720.
(14) Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.;
Clements, A.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am.
Chem. Soc. 2008, 130, 15784.
(15) Yang, Y. A.; Feng, W.; Hu, J. C.; Zou, S. L.; Gao, R. Z.;
Yamato, K.; Kline, M.; Cai, Z. H.; Gao, Y.; Wang, Y. B.; Li, Y. B.;
Yang, Y. L.; Yuan, L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2011,
133, 18590.
(16) Wu, X. X.; Liang, G. X.; Ji, G.; Fun, H. K.; He, L.; Gong, B.
Chem. Commun. 2012, 48, 2228.
(17) Such a strategy was recently adopted by us to develop folding
aromatic polyamides that share the same backbone with 3: Cao, J. X.;
Kline, M.; Chen, Z. Z.; Luan, B.; Lv, M. L.; Zhang, W. R.; Lian, C. X.;
Wang, Q. W.; Huang, Q. F.; Wei, X. X.; Deng, J. G.; Zhu, J.; Gong, B.
Chem. Commun. 2012, 48, 11112.
Org. Lett., Vol. 15, No. 18, 2013
4763