Organic Letters
Letter
Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005. (c) Murahashi, S.-I.;
Zhang, D. Chem. Soc. Rev. 2008, 37, 1490.
(5) (a) Alagiri, K.; Devadig, P.; Prabhu, K. R. Chem.Eur. J. 2012, 18,
5160. (b) Su, W.; Yu, J.; Li, Z.; Jiang, Z. J. Org. Chem. 2011, 76, 9144.
(c) Muramatsu, W.; Nakano, K.; Li, C.-J. Org. Lett. 2013, 15, 3650.
peroxyl radical F (although the initiation process is unclear) to
generate G, which would facilitate single electron transfer from 1
to give an aminium radical species H, followed by deprotonation
of the benzylic proton of H with the acetate anion to provide A
(Scheme 5). This mechanism would operate better with a weaker
(6) Richter, H.; Frohlich, R.; Dniliuc, C.-G.; Mancheno, O.-G. Angew.
̈
̃
Chem., Int. Ed. 2012, 51, 8656.
Scheme 5. Proposed Mechanisms for the Generation of the
Benzylic Radical Species A in the Presence of Acetic Acid
(7) Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M.
J. Org. Chem. 2009, 74, 7464.
(8) (a) Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A.
Org. Lett. 2013, 15, 574. (b) Nobuta, T.; Fujiya, A.; Yamaguchi, T.; Tada,
N.; Miura, T.; Itoh, A. RSC Adv. 2013, 3, 10189.
(9) Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Org. Lett. 2014, 16, 2346.
(10) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810. (b) Li, Z.;
Li, C.-J. Org. Lett. 2004, 6, 4997. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2005, 127, 6968. (d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.
(e) Li, Z.; Bohle, S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
(f) Basle,
Org. Lett. 2008, 10, 3661. (h) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz,
C.; Feres, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106.
(i) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134,
5317. (j) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
(11) (a) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505.
(b) Liu, P.; Liu, Y.; Wong, E. L.-M.; Xiang, S.; Che, C.-M. Chem. Sci.
2011, 2, 2187. (c) Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org.
Chem. 2010, 75, 3916. (d) Ratnikov, M. O.; Xu, X.; Doyle, M. P. J. Am.
Chem. Soc. 2013, 135, 9475.
(12) (a) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am.
Chem. Soc. 2006, 128, 5648. (b) Ratnikov, M. O.; Doyle, M. P. J. Am.
Chem. Soc. 2013, 135, 1549.
(13) (a) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394.
(b) To, W.-P.; Tong, G. S.-M.; Liu, W.; Ma, C.; Liu, J.; Chow, A. L.-F.;
Che, C.-M. Angew. Chem., Int. Ed. 2012, 51, 2654. (c) Xie, J.; Li, H.;
Zhou, J.; Cheng, Y.; Zhu, C. Angew. Chem., Int. Ed. 2012, 51, 1252.
(14) Shu, X.-Z.; Yang, Y.-F.; Xia, X.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M.
Org. Biomol. Chem. 2010, 8, 4077.
́ ́
O.; Li, C.-J. Green Chem. 2007, 9, 1047. (g) Basle, O.; Li, C.-J.
́
acid than with a stronger acid because a weaker acid should have a
reasonably basic conjugated base that could be involved in the
deprotonation of H to generate radical species A.24,25
In summary, we have established an oxidative C−C bond-
forming reaction that occurs at a benzylic C−H bond adjacent to
a tertiary amine. The utility of the reaction was fully
demonstrated by applying it to a wide range of C−C bond-
forming reactions with various nucleophiles and substrates.
Significantly, the reaction proceeds in the presence of only acetic
acid and molecular oxygen, and no metal catalyst or external
oxidant is required. Further investigations are currently in
progress, which are aimed at expanding the scope of this
environmentally friendly reaction and elucidating the mecha-
nisms involved.
ASSOCIATED CONTENT
* Supporting Information
(15) Jones, K. M.; Karier, P.; Klussmann, M. ChemCatChem 2012, 4,
51.
■
S
(16) (a) Alagiri, K.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 835.
(b) Wang, F.; Ueda, W. Chem.Eur. J. 2009, 15, 742.
Experimental details and procedures, compound characterization
data, copies of 1H and 13C NMR spectra for all new compounds.
This materials is available free of charge via the Internet at http://
(17) For examples, see: (a) McNally, A.; Prier, C. K.; MacMillan, D. W.
́ ́
C. Science 2011, 334, 1114. (b) Condie, A. G.; Gonzalez-Gomez, J. C.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464. (c) Freeman, D.
B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.
(d) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672.
(e) Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. Beilstein J. Org. Chem.
AUTHOR INFORMATION
Corresponding Author
■
2013, 9, 1977. (f) Hari, D. P.; Konig, B. Org. Lett. 2011, 13, 3852.
̈
Notes
́
́
, A.; Sud, A.; Sureshkumar, D.; Klussmann, M. Angew.
(18) (a) Pinter
Chem., Int. Ed. 2010, 49, 5004. (b) Schweitzer-Chaput, B.; Sud, A.;
́
́
Pinter, A.; Dehn, S.; Schulze, P.; Klussmann, M. Angew. Chem., Int. Ed.
The authors declare no competing financial interest.
2013, 52, 13228.
(19) Komatsu, Y.; Yoshida, K.; Ueda, H.; Tokuyama, H. Tetrahedron
Lett. 2013, 54, 377.
(20) See the Supporting Information (SI).
ACKNOWLEDGMENTS
■
This work was financially supported by the Cabinet Office,
Government of Japan through its “Funding Program for Next
Generation World-Leading Researchers (LS008), and the JSPS
through a Grant-in-aid for Scientific Research (A) (26253001)
and Young Scientists (B) (26860004). We thank reviewers for
their valuable suggestions.
(21) Rieche, A.; Hoft, E.; Schultze, H. Chem. Ber. 1964, 97, 195.
̈
(22) Peracetic acid mediated oxidation may be excluded by a control
experiment on an oxidative aza-Henry reaction with peracetic acid
instead of oxygen and acetic acid, which did not give the desired product,
but provided the corresponding N-oxide in 45% yield; see the SI.
(23) Another possibility that D might be formed by direct 1e oxidation
of A could not be excluded because an attempt to detect hydrogen
peroxide by starch-iodine testing was unsuccessful (see the SI).
(24) For a series of experiments using various Brønsted acids including
acid−base conditions, see the SI.
REFERENCES
■
(1) For a recent review, see: Jana, R.; Pathak, T. P.; Sigman, M. S. Chem.
Rev. 2011, 111, 1417.
(2) For reviews, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(b) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53,
74. (c) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353.
(3) Bergman, R. G. Nature 2007, 446, 391.
(25) Kobayashi et al. also reported the ineffectiveness of strong acid
catalysts for the oxidative aza-Henry reaction.
(26) Valgimigli, L.; Amorati, R.; Petrucci, S.; Pedulli, G. F.; Hu, D.;
Hanthorn, J. J.; Pratt, D. A. Angew. Chem., Int. Ed. 2009, 48, 8348.
(4) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem.
Soc. 2003, 125, 15312. (b) Murahashi, S.-I.; Nakae, T.; Terai, H.;
D
dx.doi.org/10.1021/ol5018883 | Org. Lett. XXXX, XXX, XXX−XXX