3
6. For enantiodiscrimination of chiral phosphine oxides and boranes, see:
(a) Rivard, M.; Guillen, F.; Fiaud, J-C.; Aroulanda C.; Lesot, P. Tetrahedron:
Asymmetry, 2003, 14, 1141-52; For chiral phosphonium salts, see: Meddour,
A.; Uziel, J.; Courtie J.; Juge, S. Tetrahedron: Asymmetry, 2006, 17, 1424-29.
7. For a review of acyl phosphonium and ammonium species, see: (a)
Kolesinska, B. Cent. Eur. J. Chem., 2010, 8, 1147-71; For early reports, see:
(b) Yakshin, V. V.; Sokal'skaya, L. I. Zh. Obshch. Khim., 1973, 43, 440; (c)
Lukashev, N. V.; Artyushin, O. I.; Lazhko, E. I.; Tafeenko, V. A.; Kazankova
M. A.; Lutsenko, I. F. Zh. Obshch. Khim., 1988, 58, 316-327. (d) Thamm R.;
Fluck, E. Z. Naturforsch. Pt B, 1982, 37B, 965-74; (e) Gololobov, Y. G.;
Pinchuk, V. A.; Thoennessen H.; Jones P.G.; Schmutzler, R. Phosphorus,
Sulfur Silicon Relat. Elem, 1996, 115, 19-37.
8. Isolated salts are reported to be very hygroscopic but stable in the absence
of moisture, see reference 7(b).
9. For reviews, on phosphine-based nucleophilic catalysis, see: (a) Zhou, Z.;
Wang, Y.; Tang C. Curr. Org. Chem., 2011, 15, 4083-4107; (b) Marinetti,
A.; Voituriez, A. Synlett, 2010, 174-194; (c) Cowen, B. J.; Miller, S. J. Chem.
Soc. Rev., 2009, 38, 3102-3116; (d) Methot, J. L.; Roush, W. R.; Adv. Synth.
Calat., 2004, 346, 1035-1050.
10. For examples of acylated phosphines as stoichiometric intermediates, see:
(a) Maeda, H.; Maki T.; Ohmori, H. Tetrahedron Lett., 1995, 36, 2247-50; (b)
Maeda, H.; Okamoto, J.; Ohmori, H. Tetrahedron Lett., 1996, 37, 5381-84;
(c) Maeda, H.; Takahashi K.; Ohmori, H. Tetrahedron, 1998, 54, 12233-42;
(d) Maeda, H.; Huang, Y.; Hino, N.; Yamauchi Y.; Hidenobu, O. Chem.
Commun., 2000, 2307-8; (e) Maeda, H.; Hino, N.; Yamauchi, Y.; Ohmori, H.
Chem. Pharm. Bull., 2000, 48, 1196-99. See also: (f) Weiss, R.; Bess M.;
Huber S. M.; Heinemann, F. W. J. Am. Chem. Soc., 2008, 130, 4610-17.
11. Jensen, K. A. J. Prakt. Chem., 1937, 148, 101-106.
12. (a) Vedejs E.; Donde, Y. J. Am. Chem. Soc., 1997, 119, 9293-4; (b)
Uncharacterised oxycarbonyl phosphonium salts have been reported as
intermediates, see reference 10c. For an example of the related carbamoyl
phosphine boranes, see: (c) Imamoto, T.; Tamura, K.; Ogura, T.; Ikematsu,
Y.; Mayama D.; Sugiya, M. Tetrahedron: Asymmetry, 2010, 21, 1522-8.
13. General procedure for the preparation of phosphonium salts.
The phosphine was added to a solution of the chloroformate in toluene. This
mixture was stirred at room temperature for 30 min. The resulting precipitate
was collected by filtration and washed with toluene and dried to yield the
alkoxycarbonyl phosphonium salt.
Scheme 3. Reagents and conditions: CDCl3, room temperature.
Having demonstrated effective enantiodiscrimination, the
enantiomeric excess of scalemic mixtures of phospholanes (S,S)-10
and (R,R)-10 in ratios of 90:10 and 99:1 were determined by
derivatisation with (R)-menthyl chloroformate.22 These results
showed that a reliable measurement of enantiomeric excess of up to
98% could be obtained by this technique.
In conclusion, the utility of menthyl chloroformate as a cheap,
commercially available reagent for the determination of the
enantiomeric excess of representative chiral tertiary phosphines has
been demonstrated. This method is ideally suited to assessing the
enantiomeric excess of nucleophilic chiral phosphines for application
in organocatalysis and as ligands in transition metal catalysis, and
provides a convenient and simple alternative to complementary
chromatographic methods.
iso-Butoxycarbonyl dimethylphenylphosphium chloride (3)
Prepared using the general procedure, using dimethylphenyl phosphine (1)
(1.0 g, 1.0 mL, 7.2 mmol), iso-butyl chloroformate (1.18 g, 1.1 mL, 8.64
mmol) and toluene (2 mL), to yield phosphonium salt 3 (2.29 g, 97%) as a
white solid. Decomposition point: 95-97 oC; νmax cm-1: 2963, 2875, 1727,
Acknowledgements
i
1440, 1211, 962, 912; H (400 MHz, CDCl3) 0.88 (3H, s, Pr(Me)), 0.90 (3H,
i
i
The authors would like to thank the Leverhulme Trust for funding
Project Grant F/01 374/H (R.C.H.) and the EPSRC Mass
Spectrometry Service at Swansea University.
s, Pr(Me)), 2.05 (1H, hept, J = 7 Hz, Pr(CH)), 2.95 (6H, d, J = 15 Hz, P-
Me2), 4.23 (2H, dd, J = 6 and 1 Hz, CH2O), 7.61-7.66 (2H, m, Ph), 7.71-7.75
(1H, m, Ph), 7.88-7.94 (2H, m, Ph); C (100 MHz, CDCl3) 8.5 (2C, 1JPC = 55
3
Hz), 18.8 (2C), 27.5, 75.5 (d, JPC = 4 Hz), 117.5 (1JPC = 117 Hz), 130.2 (2C,
d, 2JPC = 14 Hz), 131.7 (2C, d, 3JPC = 10 Hz), 135.1 (d, 4JPC = 4 Hz), 163.2 (d,
1JPC = 136, Hz); P (161 MHz, CDCl3) +20.9. LRMS(ESI+): 239.1 ([M-Cl]+,
100%), 240.1 (14); HRMS (ESI+): 239.1193 ([M-Cl]+ C13H20O2P requires
239.1195).
References and notes
1. Phosphorus Ligands in Asymmetric Catalysis, Vol. 3 (Ed.: Borner A.),
Wiley-VCH, New York, 2008, 1175.
2. (a) Colby E. A.; Jamison, T. F., J. Org. Chem. 2003, 68, 156-166; (b)
Muci, A. R.;Campos, K. R.; Evans, D. A. J. Am. Chem. Soc., 1995, 117,
9075-76.
14. The PF6 salt of 2 was prepared by metathesis of the chloride of (iso-
propyl-oxycarbonyl) dimethylphenyl phosphonium chloride with sodium
hexafluorophosphate in acetone.
Crystal data for the PF6 salt of 2: C12H18O2P·PF6, Mr = 370.20, monoclinic, a
= 8.6809(3), b = 14.0685(5), c = 14.1748(5) Å, β = 105.488(4) o, V =
1668.27(10) Å3, Z = 4, P21/c, Dc = 1.47 g cm3, = 0.322 mm1, T = 120 K,
3875 unique reflections, 3212 with F2 > 2, R(F, F2>2) = 0.051, Rw(F2, all
data) = 0.12. There are two orientations of the PF6- anion in the ratio 2:1.
Crystallographic data (excluding structure factors) have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication
number CCDC 931374. Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44
15. Molecular illustration was prepared with Mercury (Macrae, C.F.;
Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler,
M.; van de Streek, J. J. Appl. Crystallogr., 2006, 39, 453-457) and POV-RAY
(Persistence of Vision Pty. Ltd. 2004. Persistence of Vision™ Raytrace,
Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia,
http://www.povray.org).
3. For a recent review, see: (a) Wenzel, T. J.; Chisholm, C. D. Prog. Nucl.
Magn. Reson. Spectrosc., 2011, 59, 1-63; (b) Wenzel, T. J. Discrimination of
Chiral Compounds Using NMR Spectroscopy, Wiley Interscience, Hoboken,
NJ, 2007; (c) Duddeck H.; Gomez, E. D. Chirality, 2009, 21, 51-68; (d)
Donnoli, M. I.; Superchi, S.; Rosini, C. Mini-Rev. Org. Chem., 2006, 3, 77-
92; (e) Blazewska, K. M.; Gadja, T. Tetrahedron: Asymmetry, 2009, 20,
1337-61.
4. In contrast, chiral phosphorus based reagents for derivatising amines and
alcohols exploit 31P NMR spectroscopy to assess ee, see: (a) Hulst, R.;
Kellogg R. M.; Feringa, B. L. Recl. Trav. Chim. Pay-B, 1995, 114, 115-138 ;
For recent examples, see: (b) Reiner, T.; Naraschewski, F. N.; ; Eppinger, J.
Tetrahedron: Asymmetry, 2009, 20, 362-67; (c) Gulea, M.; Kwiatkowska, M.;
Lyzwa, P.; Legay, R.; Gaumont A-C.; Kielbasinski, P. Tetrahedron:
Asymmetry, 2009, 20, 293-297; (d) Mastranzo, V. M.; Quintero L.; De
Parrodi, C. A. Chirality, 2007, 19, 503-507.
16. (a) Sgro, M. J.; Domer, J.; Stephan, D. W. Chem. Commun., 2012, 48,
7253-55; (b) Momming, C.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme, S.;
Stephan, D.W.; Erker, G. Angew. Chem. Int. Ed., 2009, 48, 6643-46.
17. Prepared from the corresponding alcohol and phosgene, see reference
12(a).
5. (a) Wild, S. B. Coord. Chem. Rev., 1997, 166, 291-311; (b) Dunina, V. V.;
Kuz'mina, L. G.; Kazakova, M. Y.; Grishin, Y. K.; Veits, Y. A.; Kazakova, E.
I. Tetrahedron: Asymmetry, 1997, 8, 2537-2545. (c) For references to similar
ee assays, see:, Ng, J. K. P;. Chen, S.; Tan, G. K.; Leung P-H. Tetrahedron:
Asymmetry, 2007, 18, 1163-69.