Organic Letters
Letter
disaccharides 27 and 28 were obtained (75% and 98%, Scheme
4).
of Colloids and Interfaces, Potsdam) for initial experiments and
for providing some staring materials. Dr. S. Gotze and Dr. P.
̈
Stallforth (both Leibniz Institute for Natural Product Research
and Infection Biology, Jena) are acknowledged for critical
comments to the manuscript and the authors are thankful to Dr.
K. Gilmore (Max Planck Institute of Colloids and Interfaces,
Potsdam) for helpful discussions.
Scheme 4. Glycosylations Using Deoxy Glucosides 25 and 26
REFERENCES
■
(1) Boltje, T. J.; Buskas, T.; Boons, G. J. Nat. Chem. 2009, 1, 611−22.
(2) Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046−1051.
(3) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40,
(4) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996,
(5) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900−
(6) Stallforth, P.; Lepenies, B.; Adibekian, A.; Seeberger, P. H. J. Med.
Chem. 2009, 52, 5561−5577.
(7) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic
Molecules; University Science Books: Sausalito, 1999.
(8) Lloyd-Jones, G. C.; Fairlamb, I. J. S. Annu. Rep. Prog. Chem., Sect. B:
Org. Chem. 2001, 97, 113−141.
a
1
The anomeric ratio was determined by H NMR.
Gold(I)-catalyzed glycosylations that are typically executed in
(9) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177−2250.
(10) Chen, M. S.; White, M. C. Science 2007, 318, 783−787.
a conventional round-bottom flask for several hours provide
higher yields in some cases.22 The elevated temperatures used in
the in-flow setup to achieve short reaction times (20 to 30 min)
can result in benzoate migration byproducts when using C2-
participating group glycosylating agents thereby lowering the
overall yield. This explains cases of discrepancy of the product
yield between a conventional batch and an in-flow reaction setup.
In summary, the first gold(I)-catalyzed glycosylations in a
continuous flow reactor were demonstrated. The reaction setup
allows for access to a variety of glycosides in good to high yields.
The glycosylations proceed in short reaction times of only 20 to
30 min. The anomeric ratio can be controlled by neighboring
group participation or the selection of solvent in the same way as
for a conventional batch setup. For one particular set of reaction
conditions, in principle, the release of the isocoumarin leaving
group enables in-line monitoring to provide real time
information on the glycosylation reactions in flow.48
(11) Furstner, A.; Majima, K.; Martín, R.; Krause, H.; Kattnig, E.;
̈
Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 1992−2004.
(12) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104,
(13) Arcadi, A. Chem. Rev. 2008, 108, 3266−3325.
(14) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239−3265.
(15) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2013, 47, 902−
(16) Vidadala, S. R.; Gayatri, G.; Sastry, G. N.; Hotha, S. Chem.
Commun. 2011, 47, 9906−9908.
(17) Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620−9621.
(18) Gotze, S.; Fitzner, R.; Kunz, H. Synlett 2009, 20, 3346−3348.
̈
(19) Luo, J.; Wan, Q. Recent Advances in Gold-Catalyzed
Glycosylation. In Carbohydrate Chemistry; Rauter, A. P., Lindhorst, T.,
Queneau, Y., Eds.; The Royal Society of Chemistry: Cambridge, U.K.,
2014; Vol. 40, pp 140−159.
(20) Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2009, 131, 12076−12077.
(21) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604−3608.
(22) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Chem. - Eur. J.
(23) Kandasamy, J.; Hurevich, M.; Seeberger, P. H. Chem. Commun.
(24) Esposito, D.; Hurevich, M.; Castagner, B.; Wang, C.-C.;
Seeberger, P. H. Beilstein J. Org. Chem. 2012, 8, 1601−1609.
(25) Walvoort, M. T. C.; van den Elst, H.; Plante, O. J.; Kroeck, L.;
Seeberger, P. H.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. C.
Angew. Chem., Int. Ed. 2012, 51, 4393−4396.
ASSOCIATED CONTENT
■
S
* Supporting Information
Schematic representation of the reactor setup, experimental
procedures, and spectroscopic data of new compounds. The
Supporting Information is available free of charge on the ACS
AUTHOR INFORMATION
■
(26) Kroeck, L.; Esposito, D.; Castagner, B.; Wang, C.-C.;
Bindschaedler, P.; Seeberger, P. H. Chem. Sci. 2012, 3, 1617−1622.
(27) Seeberger, P. H. Chem. Soc. Rev. 2008, 37, 19−28.
(28) Hsu, C.-H.; Hung, S.-C.; Wu, C.-Y.; Wong, C.-H. Angew. Chem.,
Int. Ed. 2011, 50, 11872−11923.
Corresponding Author
Author Contributions
The project was conceived by P.H.S., S.M., and D.T.M., and the
experiments were conducted by S.M. The manuscript was
written through contributions of S.M. and P.H.S. All authors
have given approval to the final version of the manuscript.
(29) Eller, S.; Collot, M.; Yin, J.; Hahm, H. S.; Seeberger, P. H. Angew.
Chem., Int. Ed. 2013, 52, 5858−5861.
(30) Weishaupt, M. W.; Matthies, S.; Seeberger, P. H. Chem. - Eur. J.
(31) Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291,
Notes
The authors declare no competing financial interest.
(32) Tanaka, K.; Fukase, K. Org. Process Res. Dev. 2009, 13, 983−990.
(33) Geyer, K.; Gustafsson, T.; Seeberger, P. H. Synlett 2009, 2009,
ACKNOWLEDGMENTS
■
We thank the Max Planck Society for generous funding. The
authors would like to thank Dr. S. Bhunia (Max Planck Institute
(34) Carrel, F. R.; Geyer, K.; Codee, J. D. C.; Seeberger, P. H. Org. Lett.
C
Org. Lett. XXXX, XXX, XXX−XXX