designed binucleophilic bisketone thioethers 2reacting with
enals 3 (Scheme 1).12ꢀ14
In the design of a proposed organocatalyzed formal
[3 þ 3] cyclcoaddition reaction to generate requisite 3,4-
dihydro-2H-thiopyrans, a new class of binucleophilic bis-
ketone thioethers 2 is designed. It is conceived that the
bisketone moiety in 2 renders the two “CH2” acidic to
produce two contingent nucleophilic species for the initial
Michael addition and subsequent aldol-condensation re-
action (Scheme 1). Therefore, they should be nucleophili-
cally active enough to participate in the Michael and
aldolꢀcondensation cascade process. In addition, the dif-
ferentiation of the reactivities of the two similar nucleo-
philic “CH2” moieties presents an important challenge
when R1 and R2 are not the same since this directly affects
the nature of products formed. It is desired that the more
active “CH2” reacts first in the initial Michael reaction
while the less active one engages in the subsequent intra-
molecular aldol-condensation process.
To probe the validity of the proposed organocatalytic
thio [3 þ 3] cycloaddition process, we probed a model reac-
tion by using simple symmetric 2,20-thiobis(1-phenyl-
ethanone) 2a with trans-cinnamaldehyde 3a catalyzed
by diphenylprolinol silyl ether (I) in the initial attempt
(Table 1). To our delight, the reaction proceeded smoothly
to afford the desired 3,4-dihydro-2H-thiopyran 4a in good
yield (69%, entry 1), with excellent enantioselectivity
(ee >99%) and moderate diastereoselectivity (70:30 dr).
This encouraging result proved our working hypothesis.
Moreover, we demonstrated that the newly designed
Figure 1. Representative bioactive molecules containing a 3,4-
dihydro-2H-thiopyran unit.
also been explored using chiral auxiliaries.7 Very recently,
Jørgensen et al. reported the first organocatalytic enantio-
selective thio-DielsꢀAlder reactions, leading to chiral 3,6-
dihydro-2H-thiopyrans.8
While significanteffortshavebeen madeonthesynthesis
of the dihydrothiopyrans using the most popular [4 þ 2]
cycloaddition methods, formal [3 þ 3] cycloaddition reac-
tions offer an alternative approach to creating structurally
different architectures of the 6-membered rings.9,10 In this
context, notably Hsung and co-workers developed a series
of highly useful methods for the synthesis of 6-membered
ring structures.10 Although catalytic enantioselective meth-
ods are appealing, the examples are extremely rare.9bꢀf
Hong, Tang, and Hayashi independently reported efficient
organocatalytic enantioselective [3 þ 3] ring formation of
enantioenriched cyclohexanes,9bꢀd and Hayashi and our
group disclosed approaches to chiral piperidines.9e,f Never-
theless, to the best of our knowledge, organocatalyzed
[3 þ 3] cycloaddition has not been reported for the forma-
tion of chiral dihydrothiopyrans. Toward this end, we wish
to report the first asymmetric construction of 3,4-dihydro-
2H-thiopyran framework with creation of two contiguous
stereogenic centers catalyzed by diphenylprolinol silyl
ethers11 under mild reaction conditions using newly
(12) Recent reviews of organocatalytic cascade reactions, see: (a) Yu,
X.;Wang, W. Org. Biomol. Chem. 2008, 6, 2036. (b)Alba, A.; Companyo,
X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432. (c) Grondal,
C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (d) Ruiz, M.; Lopez-
Alvarado, P.; Giorgi, G.; Menendez, J. C. Chem. Soc. Rev. 2011, 40, 3445.
(e) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237.
(13) For recent selected examples of organocatalytic Michaelꢀaldol
reactions, see: (a) Enders, D.; Wang, C.; Bats, J. W. Synlett 2009, 11,
1777. (b) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem.,
Int. Ed. 2009, 48, 3699. (c) Han, B.; Xiao, Y.-C.; He, Z.-Q.; Chen, Y.-C.
Org. Lett. 2009, 11, 4660. (d) Zhao, G.-L.; Dziedzic, P.; Ullah, F.;
Eriksson, L.; Cordova, A. Tetrahedron Lett. 2009, 50, 3458. (e) Reyes,
E.; Talavera, G.; Vicario, J. L.; Badia, D.; Carrillo, L. Angew. Chem.,
Int. Ed. 2009, 48, 5701. (f) Companyo, X.; Zea, A.; Alba, A.-N. R.;
Mazzanti, A.; Moyano, A.; Rios, R. Chem. Commun. 2010, 46, 6953. (g)
Cui, H.-F.; Yang, Y.-Q.; Chai, Z.; Li, P.; Zheng, C.-W.; Zhu, S.-Z.;
Zhao, G. J. Org. Chem. 2010, 75, 117. (h) Tang, J.; Xu, D. Q.; Xia, A. B.;
Wang, Y. F.; Jiang, J. R.; Luo, S. P.; Xu, Z. Y. Adv. Synth. Catal. 2010,
352, 2121. (i) Gao, Y.; Ren, Q.; Wu, H.; Li, M.; Wang, J. Chem.
Commun. 2010, 46, 9232. (j) Wang, L.-L.; Peng, L.; Bai, J.-F.; Huang,
Q.-C.; Xu, X.-Y.; Wang, L.-X. Chem. Commun. 2010, 46, 8064. (k)
Sugiura, M.; Sato, N.; Sonoda, Y.; Kotani, S.; Nakajima, M. Chem.
Asian J. 2010, 5, 478. (l) Tan, B.; Candeias, N.; Barbas, C. F., III. Nat.
Chem. 2011, 3, 473. (m) Duan, S.-W.; Li, Y.; Liu, Y.-Y.; Zou, Y.-Q.; Shi,
D.-Q.; Xiao, W.-J. Chem. Commun. 2012, 48, 5160. (n) Huang, X.-F.;
Liu, Z.-M.; Geng, Z.-C.; Zhang, S.-Y.; Wang, Y.; Wang, X.-W. Org.
(8) Jiang, H.; Cruz, D. C.; Li, Y.; Lauridsen, V. H.; Jorgensen, K. A.
J. Am. Chem. Soc. 2013, 135, 5200.
(9) For a review of organocatalytic formal [3 þ 3] cycloaddition
reactions, see: (a) Pellissier, H. Tetrahedron 2012, 68, 2197. See other
selected examples: (b) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H.
Org. Lett. 2006, 8, 2217. (c) Cao, C. L.; Sun, X. L.; Kang, Y. B.; Tang, Y.
Org. Lett. 2007, 9, 4151. (d) Hayashi, Y.; Toyoshima, M.; Gotoh, H.;
Ishikawa, H. Org. Lett. 2009, 11, 45. (e) Hayashi, Y.; Gotoh, H.; Masui,
R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012. (f) Zu, L.; Xie,
H.; Li, H.; Wang, J.; Yu, X.; Wang, W. Chem.;Eur. J. 2008, 14, 6333.
(g) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. (h) Zhu,
M.-K.; Wei, Q.; Gong, L.-Z. Adv. Synth. Catal. 2008, 350, 1281.
(10) For a review, see: (a) Buchanan, G. S.; Feltenberger, J. B.;
Hsung, R. P. Curr. Org. Synth. 2010, 7, 363. See other selected
examples: (b) Buchanan, G. S.; Dai, H.; Hsung, R. P.; Gerasyuto,
A. I.; Scheinebeck, C. M. Org. Lett. 2011, 13, 4402. (c) Gerasyuto,
A. I.; Hsung, R. P. J. Org. Chem. 2007, 72, 2476. (d) Kurdyumov, A. V.;
Lin, N.; Hsung, R. P.; Gullickson, G. C.; Cole, K. P.; Sydorenko, N.;
Swidorski, J. J. Org. Lett. 2006, 8, 191. (e) Gerasyuto, A. I.; Hsung, R. P.;
Sydorenko, N.; Slafer, B. J. Org. Chem. 2005, 70, 4248. (f) Sydorenko,
N.; Hsung, R. P.; Darwish, O. S.; Hahn, J. M.; Liu, J. J. Org. Chem.
2004, 69, 6732. (g) Cole, K. P.; Hsung, R. P. Org. Lett. 2003, 5, 4843.
(h) Luo, S.; Zificsak, C. A.; Hsung, R. P. Org. Lett. 2003, 5, 4709.
(i) Sklenicka, H. M.; Hsung, R. P.; McLaughlin, M. J.; Wei, L. L.;
Gerasyuto, A. I.; Brennessel, W. B. J. Am. Chem. Soc. 2002, 124, 10435.
(j) Wei, L. L.; Hsung, R. P.; Sklenicka, H. M.; Gerasyuto, A. I. Angew.
Chem., Int. Ed. 2001, 40, 1516.
ꢁ ꢁ
Biomol. Chem. 2012, 10, 8794. (o) Lefranc, A.; Guenee, L.; Alexakis, A.
Org. Lett. 2013, 15, 2172.
(14) Selected examples of organocatalyzed Michael-aldol cascade
reactions from our group: (a) Wang, W.; Li, H.; Wang, J.; Zu, L.
J. Am. Chem. Soc. 2006, 128, 10354. (b) Zu, L.; Wang, J.; Li, H.; Xie, H.;
Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (c) Zu, L.; Li,
H.; Xie, H.; Wang, J.; Jiang, W.; Tang, Y.; Wang, W. Angew. Chem., Int.
Ed. 2007, 46, 3732. (d) Wang, J.; Li, H.; Xie, H.; Zu, L.; Shen, X.; Wang,
W. Angew. Chem., Int. Ed. 2007, 46, 9050. (e) Zhang, X.; Zhang, S.;
Wang, W. Angew. Chem., Int. Ed. 2010, 49, 1481. (f) Xie, H.; Zhang, Y.;
Zhang, S.; Chen, X.; Wang, W. Angew. Chem., Int. Ed. 2011, 50, 11773.
(g) Zhang, Y.; Wang, S.; Wu, S.; Zhu, S.; Dong, G.; Miao, Z.; Yao, J.;
Zhang, W.; Sheng, C.; Wang, W. ACS. Comb. Sci. 2013, 15, 298.
(11) For leading works in using diarylprolinol silyl ethers in organo-
catalysis, see: (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen,
K. A. Angew. Chem., Int. Ed. 2005, 44, 794. (b) Hayashi, Y.; Gotoh, H.;
Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212.
B
Org. Lett., Vol. XX, No. XX, XXXX