E. Dmochowska, J. Herman, M. Czerwiński et al.
Journal of Molecular Liquids 331 (2021) 115723
[28] I. Petrova, A. Gaj, D. Pociecha, et al., Design and self-assembling behaviour of comb-
like stereoregular cyclolinear methylsiloxane copolymers with chiral lactate groups,
[29] A. Bubnov, M. Cigl, N. Sedláčková, et al., Self-assembling behaviour of new functional
photosensitive cinnamoyl-based reactive mesogens, Liq. Cryst. (2020)https://doi.
Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.
[30] B.C. Baxter, B.J. Gross, D.L. Gin, Correlation of structure and phase behaviour for a se-
ries of modular, chiral liquid crystal diacrylates based on lactic acid, Liq. Cryst. 27
[31] J. Herman, E. Dmochowska, M. Czerwiński, Synthesis of new chiral mono- and
diacrylates for ferro- and antiferroelectric liquid crystals, J. Mol. Liq. 271 (2018)
[32] A. Shakila, S. Ravikumar, V. Pandiyan, Influence of temperature on thermo physical
properties of binary mixtures of ethyl acrylate and alkyl amines: an experimental
References
[1] M. Castillo-Vallés, A. Martínez-Bueno, R. Giménez, et al., Beyond liquid crystals: new
research trends for mesogenic molecules in liquids, J. Mater. Chem. C 7 (2019)
[2] J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid
crystals in soft matter nano-, bio-and microtechnology, Curr. Appl. Phys. 12 (2012)
[3] J.P.F. Lagerwall, F. Giesselmann, Current topics in smectic liquid crystal research,
[4] J.T. Crissey, J.L. Fergason, J.M. Bettenhausen, Cutaneous thermography with liquid
[33] R.D. Peralta, R. Infante, G. Cortez, Density, excess volumes and partial volumes of the
systems of p-xylene + ethyl acrylate, butyl acrylate, methyl methacrylate, and sty-
[6] H.J. Coles, S.M. Morris, Liquid crystal lasers, Nat. Photonics 4 (2010) 676–685,
[7] S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystals materials find a new order in
[34] I. Dierking, A review of polymer-stabilized ferroelectric liquid crystals, Materials. 7
[35] H. Thiem, P. Strohriegl, M. Shkunov, et al., Photopolymerization of reactive
[36] T. Kumagai, H. Yoshida, M. Ozaki, Dielectric properties of dual-frequency reactive
[8] Z. Brodzeli, L. Silvestri, A. Michie, et al., Sensors at your fibre tips: a novel liquid
crystal-based photonic transducer for sensing systems, J. Lightwave Technol. 31
[9] V.P. Shibaev, A.Y. Bobrovsky, Liquid crystalline polymers: development trends and
photocontrollable materials, Russ. Chem. Rev. 86 (11) (2017) 1024–1072, https://
[10] M. Cigl, A. Bubnov, M. Kašpar, et al., Photosensitive chiral self-assembling materials:
significant effects of small lateral substituents, J. Mater. Chem. C 4 (2016)
[11] K. D’Have, A. Dahlgren, P. Rudquist, et al., Antiferroelectric liquid crystals with 45 de-
grees tilt - a new class of promising electro-optic materials, Ferroelectrics. 244 (1)
[12] S.T. Lagerwall, A. Dahlgren, P. Jagemalm, et al., Unique electro-optical properties of
liquid crystals designed for molecular optics, Adv. Funct. Mater. 11 (2001) 87–94,
[13] K. D’Have, P. Rudquist, S.T. Lagerwall, et al., Solution of the dark state problem in
antiferroelectric liquid crystal displays, Appl. Phys. Lett. 76 (2000) 3528–3530,
Mesogens before and after Photopolymerization, Materials.
7 (2) (2014)
[37] D. Liu, D.J. Broer, Liquid crystal polymer networks: preparation, properties, and ap-
plications of films with patterned molecular alignment, Langmuir. 30 (45) (2014)
[38] K.M. Lee, T.H. Ware, V.P. Tondiglia, et al., Initiatorless Photopolymerization of liquid
crystal monomers, ACS Appl. Mater. Interfaces 8 (41) (2016) 28040–28046, https://
[39] Y. Feng, Z. Zhu, H. Zhang, et al., Chiral polymer network stabilised blue phase liquid
[40] H. Kikuchi, M. Yokota, Y. Hisakado, et al., Polymer-stabilized liquid crystal blue
[41] D. Yoshizawa, Y. Okumura, J. Yamamoto, et al., Decreasing the operating voltage of a
polymer-stabilized blue phase based on intermolecular affinity, J Polym. 51 (2019)
[42] Hongbo Lu, L. Yang, L. Xia, et al., Band-edge-enhanced tunable random laser using a
[15] Y. Kim, Y.J. Lee, D.H. Kim, et al., Fast response time of fringe-field switching liquid
crystal mode devices with reactive mesogens in a planar alignment layer, J. Phys.
[16] S. Nepal, S. Mondal, A. Sinha, et al., Fast switching behaviour and dielectric parame-
ters of two chiral ferroelectric mesogens, Liq. Cryst. 47 (10) (2020) 1464–1472,
[17] H.K. Chung, W.K. Lee, H.G. Park, et al., Polarized UV cured reactive mesogens for fast
switching and low voltage driving liquid crystal device, Opt. Express 22 (18) (2014)
[18] D. Liu, Surface dynamics at photoactive liquid crystal polymer networks, Adv Optical
[43] M. Rumi, T.J. Bunning, T.J. White, Polymer stabilization of cholesteric liquid crystals
[44] W. Zhang, J. Lub, A. Schenning, et al., Polymer stabilized Cholesteric liquid crystal Si-
loxane for temperature-responsive photonic coatings, Int. J. Mol. Sci. 21 (5) (2020)
[45] A. Bobrovsky, N. Boiko, V. Shibaev, Unusual electro-optical behaviour of the nematic
[46] P. Rudquist, D. Elfstrӧm, S.T. Lagerwall, et al., Polymer-stabilized Orthoconic
Antiferroelectric liquid crystals, Ferroelectrics. 344 (1) (2006) 177–188, https://
[47] V.K. Baliyan, S.H. Lee, S.W. Kang, Optically and spatially templated polymer architec-
tures formed by photopolymerization of reactive mesogens in periodically de-
[19] D.J. Broer, Creation of Supramolecular thin film architectures with liquid-crystalline
[20] D.J. Broer, R.G. Gossink, R.A.M. Hikmet, Oriented polymer networks obtained by
photopolymerization of liquid-crystalline monomers, Angew. Makromol. Chem.
[21] A. Bobrovsky, V. Shibaev, A. Bubnov, et al., Effect of molecular structure on chiro-
optical and photo-optical properties of smart liquid crystalline polyacrylates,
[22] K.L. Woon, A. Liedtke, M. O’Neill, et al., Photopolymerization studies of a light-
emitting liquid crystal with methacrylate reactive groups for electroluminescence,
[23] A. Bobrovsky, V. Shibaev, M. Cigl, et al., Azobenzene-containing LC polymeth-
acrylates highly photosensitive in broad spectral range, J Polym Sci Part A: Polym
[24] A. Bobrovsky, V. Shibaev, M. Cigl, et al., The effect of spacer and alkyl tail lengths on
the photoorientation processes in amorphousized films of azobenzene-containing
liquid crystalline polymethacrylates, Liq. Cryst. 47 (3) (2020) 377–383, https://doi.
[25] R. Achten, A. Koudijs, M. Giesbers, et al., Non-symmetric bent-core mesogens with
[48] M. Czerwiński, M. Urbańska, N. Bennis, et al., Influence of the type of phase sequence
and polymer-stabilization on the physicochemical and electro-optical properties of
novel high-tilt antiferroelectric liquid crystalline materials, J. Mol. Liq. 288 (2019)
[49] I. Dierking, Polymer network stabilized liquid crystals, Adv. Mater. 12 (3) (2000)
167–181,
[50] R.A.M. Hikmet, J. Lub, Anisotropic networks with stable dipole orientation obtained
by photopolymerization in the ferroelectric state, J. Appl. Phys. 77 (1995) 6234,
[52] J.P.F. Lagerwall, F. Giesselmann, M. Osipov, On the change in helix handedness at
transitions between the SmC∗ and phases in chiral smectic liquid crystals, Liq.
[53] J. Gąsowska, R. Dąbrowski, W. Drzewiński, et al., Synthesis and Mesomorphic
properties of achiral and chiral esters with high tilted Synclinic and Anticlinic
[26] T. Tóth-Katona, M. Cigl, K. Fodor-Csorba, et al., Functional photochromic methyl-
hydrosiloxane-based side-chain liquid-crystalline polymers, Macromol. Chem.
[27] A. Bubnov, V. Domenici, V. Hamplová, et al., First liquid single crystal elastomer con-
taining lactic acid derivative as chiral co-monomer: synthesis and properties, Poly-
[55] V. Novotná, V. Hamplová, M. Kašpar, et al., Variety of mesophases in compounds
with an increasing number of lactate units in the chiral chain, Liq. Cryst. 40
9