weakly coordinating directing groups (such as ketones,
amides, esters, and carboxylic acids).8,9 Although these
present studies exhibit notable advantages, they demon-
strate a particular simularity: the directing groups and the
new CꢀOH bond are located on the same aromatic ring.
Very recently, Jiao and co-workers have established a
method to synthesize various substituted 2-(pyrdin-2-yl)-
phenols from 2-phenylpyridines.10 Herein, we report the
firstR2(O)P-directedPd(II)-catalyzedCꢀHhydroxylation
to synthesize various substituted 20-phosphorylbiphenyl-
2-ol compounds (Scheme 1). In contrast to the former
directing groups (pyridine, ketone, amides, esters, and
carboxylic acids), using the R2(O)P as a directing group
has some unique features: first, organophosphorus mole-
cules play an important part in life sciences and pharma-
ceuticals.11 Moreover, the R2(O)P group not only acts as the
directing group but after reduction is also retained as a
chelating group in the desired 20-phosphorylbiphenyl-2-ol
products, which are one type of very important P,O-ligands.
In particular, all procedures are easy to handle, the reaction
condition is simple to assemble, and the reaction tempera-
ture requires 60 °C, which is easily aquired. Furthermore,
this reaction provides a pathway for the preparation of
substituted 20-phosphorylbiphenyl-2-ol compounds that is
far more concise and effective than previous reports.12
Scheme 1. Different Directing Groups Guiding
Transition-Metal-Catalyzed CꢀH Hydroxylation
In the past year, various research groups have reported a
series of transition-metal-catalyzed phosphorous acid or
phosphate ester directed CꢀH functionalization.13 Apart
from these developments, our group explored R2(O)P-
directed Pd(II)-catalyzed CꢀH activation that may under-
go a seven-membered cyclopalladium pretransition state,
followed by successful CꢀH olefination to synthesize
alkeneꢀphosphine compounds.14 Inspired by this research,
we first used 2-(diisopropylphosphoryl)biphenyl (1a)
as the model substrate in the presence of Pd(OAc)2
(10 mol %) as catalyst in 1,2-dichloroethane (DCE) at
80 °C. The reaction was attempted with various oxidants;
ultimately, the desired product 2a was obtained in 64%
yield by using of [bis(trifluoroacetoxy)iodobenzene] (PhI-
(OTFA)2) (Table1, entries 1ꢀ4). Theresults wereencoura-
ging. We further optimized the reaction conditions.
Although the substrate had completely converted in the
former reaction condition, we observed a lower yield of 2a.
Considering the decomposition of the substrate or the
target molecule, we screened the reaction temperatures
and found that depression of the reaction temperature was
in fact beneficial for the reaction, and the best yield of 2a
improved to 69% at 60 °C (Table 1, entries 5ꢀ6). The
loading of the screening showed that the most appropriate
oxidant was 1.5 equiv of PhI(OTFA)2, and product 2a was
generated in 73% yield (Table 1, entries 7 and 8). Further
screening of different palladium catalysts showed that
(6) For selected reviews on CꢀH activation, see: (a) Dyker, G.
Handbook of C-H Transformation: Application in Organic Synthesis;
Wiley-VCH: Weinheim, 2005. (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074. (d) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147. (f) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev.
2010, 110, 624. (g) Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111,
1780. (h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev.
€
2011, 40, 5068. (i) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F.
Chem. Soc. Rev. 2011, 40, 4740. (j) Yeung, C. S.; Dong, V. M. Chem. Rev.
2011, 111, 1215. (k) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012,
486, 518. (l) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
(7) Selected recent sp2CꢀO bond formation: (a) Cheng, X.-F.; Li, Y.;
Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.;
Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236. (b) Yang, M.-Y.; Jiang, M.-
Y.; Shi, W.-J.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2013, 15, 690. (c)
G.-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135, 9350. (d) Li,
Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S. Org. Lett. 2013, 15,
2574. Selected pioneering studies: (e) Dick, A. R.; Hull, K. L.; Sanford,
M. S. J. Am. Chem. Soc. 2004, 126, 2300. (f) Dick, A. R.; Kampf, J. W.;
Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790. (g) Chen, X.; Hao,
X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (h)
Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A 1996, 108, 35.
(8) Recent ruthenium(II)-catalyzed CꢀH bond hydroxylation: (a)
Liu, W.; Ackermann, L. Org. Lett. 2013, 15, 3484. (b) Yang, X.; Shan,
G.; Rao, Y. Org. Lett. 2013, 15, 2334. (c) Shan, G.; Han, X.; Lin, Y.; Yu, S.;
Rao, Y. Org. Biomol. Chem. 2013, 11, 2318. (d) Yang, F.; Ackermann, L.
Org. Lett. 2013, 15, 718. (e) Thirunavukkarasu, V. S.; Ackermann, L. Org.
Lett. 2012, 14, 6206. (f) Thirunavukkarasu, V. S.; Hubrich, J.; Ackermann,
L. Org. Lett. 2012, 14, 4210. (g) Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012,
14, 2874.
(9) Recent progress and selected pioneering studies about palladium-
catalyzed CꢀH bond hydroxylation: (a) Shan, G.; Yang, X.; Ma, L.;
Rao, Y. Angew. Chem., Int. Ed. 2012, 51, 13070. (b) Mo, F.; Trzepkowski,
L. J.; Dong, G. Angew. Chem., Int. Ed. 2012, 51, 13075. (c) Choy, P. Y.;
Kwong, F. Y. Org. Lett. 2013, 15, 270. (d) Zhang, Y.-H.; Yu, J.-Q. J. Am.
Chem. Soc. 2009, 131, 14654. (e) Jintoku, T.; Nishimura, K.; Takaki, K.;
Fujiwara, Y. Chem. Lett. 1990, 1687.
(10) Yan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.-F.; Cui, Y.;
Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 5827.
(11) (a) Jeught, S. V.; Stevens, C. V. Chem. Rev. 2009, 109, 2672. (b)
George, A.; Veis, A. Chem. Rev. 2008, 108, 4670. (c) Bialy, L.; Waldmann,
H. Angew. Chem., Int. Ed. 2005, 44, 3814. (d) Mathey, F. Angew. Chem., Int.
Ed. 2003, 42, 1578. (e) Johansson, T.; Stawinski, J. Nucleosides, Nucleotides
Nucleic Acids 2003, 22, 1459.
(13) (a) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910. (b) Chan, L. Y.;
Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49, 4682. (c) Chan, L.;
Cheong, L.; Kim, S. Org. Lett. 2013, 15, 2186. (d) Seo, J.; Park, Y.; Jeon,
I.; Ryu, T.; Park, S.; Lee, P. H. Org. Lett. 2013, 15, 3358. (e) Chary, B. C.;
Kim, S.; Park, Y.; Kim, J.; Lee, P. H. Org. Lett. 2013, 15, 2692. (f) Unoh,
Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2013, 15, 3258. (g) Chan, L. Y.; Meng, X. J.; Kim, S. J. Org. Chem.
2013, 78, 8826. (h) Zhao, D.; Nimphius, C.; Lindale, M.; Glorius, F. Org.
Lett. 2013, 15, 4504. (i) Jeon, W. H.; Lee, T. S.; Kim, E. J.; Moon, B.;
Kang, J. Tetrahedron 2013, 69, 5152. (j) Itoh, M.; Hashimoto, Y.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 8098.
(14) Wang, H.-Li.; Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D.
Org. Lett. 2013, 15, 502.
(12) (a) Wawrzyniak, P.; Kindermann, M. K.; Heinicke, J. W.; Jones,
P. G. Eur. J. Org. Chem. 2011, 593. (b) Kadyrov, R.; Heinicke, J.;
Kindermann, M. K.; Heller, D.; Fischer, C.; Selke, R.; Fischer, A. K.;
Jones, P. G. Chem. Ber./Recueil 1997, 130, 1663. (c) Keglevich, G.;
ꢀ
ꢀ
€
ꢀ
Kerenyi, A.; Szelke, H.; Ludanyi, K.; Kortvelyesi, T. J. Organomet.
Chem. 2006, 691, 5038.
Org. Lett., Vol. 15, No. 24, 2013
6187