1460
T. E. Hurst et al.
Letter
Synlett
(8) (a) Liu, Y.; Ma, Y.; Zhan, C.; Huang, A.; Ma, C. Synlett 2012, 23,
255. (b) Zhao, Y.; Dai, Q.; Chen, Z.; Zhang, Y.; Bai, Y.; Ma, C. ACS
Comb. Sci. 2013, 15, 130. (c) Niu, X.; Yang, B.; Li, Y.; Fang, S.;
Huang, Z.; Xie, C.; Ma, C. Org. Biomol. Chem. 2013, 11, 4102.
(9) (a) Sapegin, A. V.; Kalinin, S. A.; Smirnov, A. V.; Dorogov, M. V.;
Krasavin, M. Synthesis 2012, 44, 2401. (b) Zhao, Y.; Wu, Y.; Jia, J.;
Zhang, D.; Ma, C. J. Org. Chem. 2012, 77, 8501. (c) Sang, P.; Yu,
M.; Tu, H.; Zou, J.; Zhang, Y. Chem. Commun. 2013, 49, 701.
(d) Liu, Y.; Zhang, X.; Ma, Y.; Ma, C. Tetrahedron Lett. 2013, 54,
402. (e) Huang, A.; Liu, H.; Ma, C. RSC Adv. 2013, 3, 13976.
(f) Huang, A.; Chen, Y.; Zhou, Y.; Guo, W.; Xiaodong, W.; Ma, C.
Org. Lett. 2013, 15, 5480. (g) Yang, B.; Huang, Z.; Guan, H.; Niu,
X.; Li, Y.; Fang, S.; Ma, C. Tetrahedron Lett. 2013, 54, 5994.
(h) Sapegin, A. V.; Kalinin, S. A.; Smirnov, A. V.; Dorogov, M. V.;
Krasavin, M. Tetrahedron 2014, 70, 1077. (i) Gawande, S. D.;
Kavala, V.; Zanwar, M. R.; Kuo, C.-W.; Huang, W.-C.; Kuo, T.-S.;
Huang, H.-N.; He, C.-H.; Yao, C.-F. Adv. Synth. Catal. 2014, 356,
2599. (j) Ganguly, N. C.; Mondal, P.; Roy, S.; Mitra, P. RSC Adv.
2014, 4, 55640. (k) Yang, B.; Tan, X.; Guo, R.; Chen, S.; Zhang, Z.;
Chu, X.; Xie, C.; Zhang, D.; Ma, C. J. Org. Chem. 2014, 79, 8040.
(l) Xiao, Y.; Zhang, Z.; Chen, Y.; Shao, X.; Li, Z.; Xu, X. Tetrahedron
2015, 71, 1863. (m) Liu, S.; Hu, Y.; Qian, P.; Hu, Y.; Ao, G.; Chen,
S.; Zhang, S.; Zhang, Y. Tetrahedron Lett. 2015, 56, 2211. (n) Xie,
C.; Zhang, Z.; Yang, B.; Song, G.; Gao, H.; Wen, L.; Ma, C. Tetrahe-
dron 2015, 71, 1831.
(18) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
(19) (a) Snieckus, V. Chem. Rev. 1990, 90, 879. (b) Hartung, C. G.;
Snieckus, V. In Modern Arene Chemistry; Astruc, D., Ed.; Wiley-
VCH: New York, 2002, 330–367. (c) Board, J.; Cosman, J.;
Rantanen, T.; Singh, S.; Snieckus, V. Platinum Met. Rev. 2013, 57,
234.
(20) (a) Brewster, K.; Clarke, R. J.; Harrison, J. M.; Inch, T. D.; Utley, D.
J. Chem. Soc., Perkin Trans. 1 1976, 1286. (b) Schmutz, J.; Künzle,
F.; Hunziker, F.; Bürki, A. Helv. Chim. Acta 1965, 48, 336.
(21) Knappke, C. E. I.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed.
2010, 49, 3568.
(22) See Supporting Information for full experimental details and
compound characterization.
General Procedure – Reaction of 2-Fluorobenzamides with
2-Bromophenols
A sealable tube (10 mL) was charged with the 2-fluoroben-
zamide (1.00 mmol), the 2-bromophenol (2.00 mmol), and
K2CO3 (0.290 g, 2.10 mmol). NMP (3 mL) was added, and the
tube was sealed. The heterogeneous reaction mixture was
heated to 150 °C, 180 °C, or 220 °C for 2–4 h under microwave
irradiation (Biotage Initiator Microwave operating at 400 W).
After cooling to r.t., the reaction mixture was partitioned
between 2 M HCl (20 mL) and EtOAc (3 × 20 mL). The combined
organics were washed with 2 M NaOH (2 × 20 mL) and sat. brine
(20 mL), dried over MgSO4, subjected to filtration, and concen-
trated in vacuo. The crude product was purified by flash chro-
matography on silica gel, eluting with EtOAc–hexanes (1:19 to
1:5) to deliver the title compound.
(10) Kitching, M. O.; Hurst, T. E.; Snieckus, V. Angew. Chem. Int. Ed.
2012, 51, 2925.
(11) (a) Bunnet, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273.
(b) Mąkosza, M. Chem. Eur. J. 2014, 20, 5536.
(12) As is well appreciated, the rate of SNAr reactions is highly
dependent on the nature of the leaving group, see ref. 11a and
references therein.
(13) (a) Kappe, C. O.; Pieber, B.; Dallinger, D. Angew. Chem. Int. Ed.
2013, 52, 1088. (b) Dudley, G. B.; Steigman, A. E.; Rosana, M. R.
Angew. Chem. Int. Ed. 2013, 52, 7918. (c) Kappe, C. O. Angew.
Chem. Int. Ed. 2013, 52, 7924.
(14) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(15) (a) Welch, J. T. Tetrahedron 1987, 43, 3123. (b) Ma, J.-A.; Cahard,
D. J. Fluorine Chem. 2007, 128, 975. (c) Meanwell, N. A. J. Med.
Chem. 2011, 54, 2529. (d) Furuya, T.; Kamlet, A. S.; Ritter, T.
Nature (London, U.K.) 2011, 473, 470.
N-Ethyl 7-Chlorodibenz[b,f][1,4]oxazepin-11(10H)-one (3a)
The reaction of N-ethyl 2-fluorobenzamide (1a, 0.167 g, 1.00
mmol) with 2-bromo-4-chlorophenol (2a, 0.415 g, 2.00 mmol)
at 220 °C for 2 h gave 3a as a colorless solid (0.170 g, 62%); mp
124–126 °C. IR (film): 1645, 1607 cm–1 1H NMR (400 MHz,
.
CDCl3): δ = 7.89 (dd, J = 1.7, 7.8 Hz, 1 H), 7.48 (dt, J = 1.5, 7.8 Hz,
1 H), 7.32 (d, J = 2.3 Hz, 1 H), 7.28 (s, 1 H), 7.26 (d, J = 7.3 Hz, 1
H), 7.22–7.18 (m, 2 H), 4.17 (q, J = 7.1 Hz, 2 H), 1.40 (t, J = 7.1 Hz,
3 H). 13C NMR (100 MHz, CDCl3): δ = 165.7 (C), 160.1 (C), 154.9
(C), 133.6 (C), 133.3 (CH), 132.0 (CH), 130.9 (C), 126.6 (C), 125.9
(CH), 124.5 (CH), 123.7 (CH), 121.9 (CH), 119.5 (CH), 44.2 (CH2),
13.6 (Me). LRMS (EI): m/z (%) = 273/275 (58/19) [M+], 238 (100),
210 (24), 195 (26), 139 (15), 105 (10), 84 (13). HRMS (EI): m/z
calcd for C15H12ClNO2+: 273.0557; found: 273.0563.
(16) Reinaud, O.; Capdevielle, P.; Maumy, M. J. Chem. Soc., Perkin
Trans. 1 1991, 2129.
(17) (a) Artamkina, G. A.; Egorov, M. P.; Beletskaya, I. P. Chem. Rev.
1982, 82, 427. (b) Meisenheimer, J. Justus Liebigs Ann. Chem.
1902, 323, 205.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 1455–1460