4
Tetrahedron Letters
acetylacetone and 4-bromobenzaldehyde. The catalyst was
good yield. Regioselectivity, chemoselectivity, heterogeneity and
reusability of the catalyst have been tested. The results were
found to be reasonable.
separated through centrifugation from the reaction mixture at
approximately 62% formation of the coupled product. The
reaction progress in the filtrate was monitored. No further
coupling was occurred even after extended reaction time,
indicating that no active Cu species leached from the support
during the reaction (Fig. 2).
Acknowledgments
We acknowledge DST, Ministry of Science and Technology
Government of India for financial support under the Nanomission
project (SR/NM/NS-27).
References and notes
1. Ren, T.; Chem. Rev. 2008, 108, 4185.
2. Hart, D. J.; Science 1984, 223, 883.
3. Ramthoul, Y. K.; Chartrand, A. Org. Lett. 2007, 9, 1029.
4. Masselot, D.; Charmant, J. P. H.; Gallagher, T. J. Am. Chem. Soc.
2006, 128, 694.
5. Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400.
6. Kamikawa, K.; Takemoto, I.; Takemoto, S.; Matsuzaka, H. J. Org.
Chem. 2007, 72, 7406.
7. Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541.
8. Babu, S. G.; Karvembu, R. Catal. Surv. Asia 2013, 17, 156.
9. Thathagar, M. B.; Beckers, J.; Rothenberg, G. Adv. Synth. Catal.
2003, 345, 979.
10. Calo, V.; Nacci, A.; Monopoli, A.; Ieva, E.; Cioffi, N. Org. Lett.
2005, 7, 617.
11. Peng, Y.; Chen, J.; Ding, J.; Liu, M.; Gao, W.; Wu, H. Synthesis
2011, 213.
12. Kantam, M. L.; Laha, S.; Yadav, J.; Bhargava, S. Tetrahedron Lett.
2008, 49, 3083.
13. Nezhad, J. M.; Akbari, J.; Heydari, A.; Alirezapour, B. Bull. Korean
Chem. Soc. 2011, 32, 3853.
14. Kantam, M. L.; Ramani, T.; Chakrapani, L.; Kumar, K. V.
Tetrahedron Lett. 2008, 49, 1498.
15. Thathagar, M. B.; Beckers, J.; Rothenberg, G. Green Chem. 2004, 6,
215.
Figure 2. Heterogeneity test [Reaction conditions: acetylacetone (3
mmol), 4-bromobenzaldehyde (1 mmol), K3PO4 (3 mmol) and
CuO/aluminosilicate (20 mg, 8.0 mol%) at 100 C in 10 mL DMF
for 18 h].
After washing the recovered CuO/aluminosilicate catalyst in
diethyl ether, we could reuse it for the reaction between
acetylacetone and 4-bromobenzaldehyde. The reaction was
carried out four times under identical reaction conditions with the
recycling of CuO/aluminosilicate catalyst. The yield of product
was 93% at the 1st run. No significant decrease was observed in
the 2nd and 3rd runs as the yield of product was 92% and 90%
respectively. There was a decrease in the yield of the product
during 4th (72%) run. The yield, however was good and
indicating a good reusability of the catalyst (Fig. 3).
16. Samim, M.; Kaushik, N. K.; Maitra, A. Bull. Mater. Sci. 2007, 30,
535.
17. Xiao, D.; Martini, L. A.; Snoeberger, R. C.; Crabtree, R. H.; Batista,
V. S. J. Am. Chem. Soc. 2011, 133, 9014.
18. He, C.; Guo, S.; Huang, L.; Lei, A. J. Am. Chem. Soc. 2010, 132,
8273.
19. Liu, J.; Zeng, R.; Zhou, C.; Zou, J.; Chin. J. Chem. 2011, 29, 309.
20. Ullah, I.; Sher, M.; Khera, R. A.; Ali, A.; Nawaz, M.; Shkoor, M.;
Iqbal, I.; Imran, M.; Villinger, A.; Fischer, C.; Langer, P.
Tetrahedron 2010, 66, 3824.
21. Ali, A.; Ullah, I.; Sher, M.; Villinger, A.; Langer, P. Tetrahedron
Lett. 2009, 50, 118.
22. Ruttinger, R.; Leutzow, J.; Wilsdorf, M.; Wilckens, K.; Czekelius, C.
Org. Lett. 2011, 13, 224.
23. Aljaar, N.; Malakar, C. C.; Conrad, J.; Strobel, S.; Schleid, T.;
Beifuss, U. J. Org. Chem. 2012, 77, 7793.
24. Kidwai, M.; Bhardwaj, S.; Poddar, R.; Beilstein J. Org. Chem. 2010,
6, 35.
25. Babu, S. G.; Neelakandeswari, N.; Dharmaraj, N.; Jackson, S. D.;
Karvembu, R. RSC Adv. 2013, 3, 7774.
26. Sazanovich, I. V.; Balakumar, A.; Muthukumaran, K.; Hindin, E.;
Kirmaier, C.; Diers, J. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D.
Inorg. Chem. 2003, 42, 6616.
27. Nguyen, A. T.; Nguyen, L. T. M.; Nguyen, C. K.; Phan, T. T. N. T.
S. ChemCatChem 2014, 6, 815.
28. Odunola, O. A.; Woods, J. A. O. Synth. React. Inorg. Met.-Org.
Chem. 2001, 31, 1297.
29. Dell'Erba, C.; Novi, M.; Petrillo, G.; Tavani, C.; Bellandi, P.
Tetrahedron 1991, 47, 333.
30. Durrell, A. C.; Li, G.; Koepf, M.; Young, K. J.; Negre, C. F. A.;
Allen, L. J.; McNamara, W. R.; Song, H.; Batista, V. S.; Crabtree, R.
H.; Brudvig, G. W. J. Catal. 2014, 310, 37.
31. Lambert, J. B.; Liu, Z. J. Chem. Crystallogr. 2007, 37, 629.
32. Provent, C.; Chautemps, P.; Pierrea, J. L. Synth. Commun. 1995, 25,
1907.
33. Gong, F.; Wang, Q.; Chen, J.; Yang, Z.; Liu, M.; Li, S.; Yang, G.
Inorg. Chem. 2010, 49, 1658.
34. Lutz, R. E.; Dien, C. K. J. Org. Chem. 1956, 21, 551.
35. Dobosz, R.; Kolehmainen, E.; Valkonen, A.; Osmia1owski, B.;
Gawinecki, R. Tetrahedron 2007, 63, 9172.
36. Padwa, A.; Brookhart, T. J. Org. Chem. 1979, 44, 23.
37. Catalyst preparation and characterization: CuO/aluminosilicate
catalyst was prepared from CuCl2∙6H2O, aluminium nitrate and
Figure 3. Reusability test [Reaction conditions: acetylacetone (3
mmol), 4-bromobenzaldehyde (1 mmol), K3PO4 (3 mmol) and
CuO/aluminosilicate (20 mg, 8.0 mol%) at 100 C in 10 mL DMF
for 18 h].
The formation of CC bond between -diketone and aryl
halide was achieved using CuO/aluminosilicate catalyst.37 This
procedure is general, simple, ligand-free, air stable, efficient,
high yielding and safe. Both aryl bromides and chlorides gave