Organic Letters
Letter
Comprehensive Asymmetric Catalysis; Springer: New York, 1999; Vols.
1−3. Although this edition is a treatise on asymmetric synthesis in
general, the vast majority of described reactions is effected with chiral
metal complexes.
(15) For simplicity, only the (2S,3S,4R)-isomer of 2b is represented
in the reaction scheme. Note that the predominating isomer of
compound 2a is (2S,3S,4S), as the priorities of substituents at C-4
change when hydrogen is substituted for methyl.
(16) It is of note that the cyclization of 3a can also proceed in the
absence of Pd(PPh3)4 by simple enamine catalysis; however, the yield
of cyclic product 2a is much lower (45%), and significant amounts
(30%) of a side product, (E)-N-(4-bromobut-2-en-1-yl)-4-methyl-
benzenesulfonamide, are formed. Calculations have shown that the
transition state for the dually catalyzed cyclization is for ∼1.5 kcal
mol−1 more favorable then the transition state for the simple enamine
catalysis (see the Supporting Information for details).
(2) (a) Bertelsen, S.; Jorgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.
(b) MacMillan, D. W. C. Nature 2008, 455, 304. (c) Dondoni, A.;
Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638. (d) Special issue on
organocatalysis: Chem. Rev. 2007, 107 (12). (e) Pellissier, H.
Tetrahedron 2007, 63, 9267. (f) List, B.; Yang, J. W. Science 2006, 313,
1584. (g) Dalko, P. I.; Moisan, L. Angew. Chem, Int. Ed. 2004, 43,
5138. (h) Special issue on organocatalysis: Acc. Chem. Res. 2004, 37
(8). (i) Dalko, P. I.; Moisan, L. Angew. Chem, Int. Ed. 2001, 40, 3726.
(j) Berkessel, A.; Groger, H. Asymmetric Organocatalysis - From
Biomimetic Concepts to Powerful Methods for Asymmetric Synthesis;
Wiley-VCH: Weinheim, 2005. (k) Dalko, P. I. Enantioselective
Organocatalysis: Reactions and Experimental Procedures; Wiley-VCH:
Weinheim, 2007.
(3) For the first reports on double catalysis, see: (a) Chen, G.; Deng,
Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C.
Tetrahedron: Asymmetry 2001, 12, 1567. (b) Nakoji, M.; Kanayama, T.;
Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329. (c) Jellerichs, B. G.;
Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
(4) For review articles on dual catalysis, see: (a) Shao, Z.; Zhang, H.
Chem. Soc. Rev. 2009, 38, 2745. (b) Zhong, C.; Shi, X. Eur. J. Org.
Chem. 2010, 2999. (c) Patil, N. T.; Shinde, V. S.; Gajula, B. Org.
Biomol. Chem. 2012, 10, 211. (d) Du, Z.; Shao, Z. Chem. Soc. Rev.
2013, 42, 1337.
(17) (a) Scott, M. E.; Lautens, M. Org. Lett. 2005, 7, 3045. (b) Yoo,
S.-e.; Lee, S. H. J. Org. Chem. 1994, 59, 6968.
(18) The chiral columns used involve Chirex 3126, Astec Chirobiotic
T, and Ultron ES-OVM. Contrary to the statement given in an
advertising paper, Astec Chirobiotic T column does not separate
diastereoisomeric kainic acids or the enantiomers of it (see the
Supporting Information for details).
(19) Inamoto, A.; Ogasawara, K.; Omata, K.; Kabuto, K.; Sasaki, Y.
Org. Lett. 2000, 2, 3543.
(20) (a) Bihelovic, F.; Saicic, R. N. Angew. Chem., Int. Ed. 2012, 51,
5687. (b) Bihelovic, F.; Karadzic, I.; Matovic, R.; Saicic, R. N. Org.
Biomol. Chem. 2013, 11, 5413.
(21) Zahel, M.; Kesberg, A.; Metz, P. Angew. Chem., Int. Ed. 2013, 52,
5390.
(22) de Jong, G. Th.; Geerke, D. P.; Diefenbach, A.; Bickelhaupt, F.
M. Chem. Phys. 2005, 313, 261.
(5) Ibrahem, I.; Cordova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(6) Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett.
2007, 9, 5063; Addition and Correction: 2007, 9, 5649.
(7) Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N. Tetrahedron
2009, 65, 10485; Corrigendum: 2010, 66, 3275.
NOTE ADDED AFTER ASAP PUBLICATION
Citations were added to reference 3 on December 18, 2013.
■
(8) Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.;
Ibrahem, I.; Cordova, A. Angew. Chem., Int. Ed. 2013, 52, 6050.
(9) For a review article on kainoids, see: Parsons, A. F. Tetrahedron
1996, 52, 4149.
(10) (a) Oppolzer, W.; Robbiani, C.; Battig, K. Tetrahedron 1984, 40,
1391. (b) Baldwin, J. E.; Lee, C.-S. J. Chem. Soc., Chem. Commun. 1987,
166. (c) Barco, A.; Benetti, S.; Casolari, A.; Pollini, G. P.; Spalluto, G.
Tetrahedron Lett. 1990, 31, 4917. (d) Barco, A.; Benetti, S.; Spalluto,
G.; Casolari, A.; Pollini, G. P.; Zanirato, V. J. Org. Chem. 1992, 57,
6279. (e) Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc.,
Chem. Commun. 1993, 125. (f) Agami, C.; Cases, M.; Couty, F. J. Org.
Chem. 1994, 59, 7937. (g) Ezquerra, J.; Estibano, A.; Rubio, A.;
Remuinan, M. J.; Vaquero, J. J. Tetrahedron Lett. 1995, 36, 6149.
(h) Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 5418.
(i) Chevliakov, M. V.; Montgomerry, J. J. Am. Chem. Soc. 1999, 121,
11139. (j) Ma, D.; Wu, W.; Deng, P. Tetrahedron Lett. 2001, 42, 6929.
(k) Cook, G. R.; Sun, L. Org. Lett. 2004, 6, 2481. (l) Yung, Y. C.;
Yoon, C. H.; Turos, E.; Yoo, K. S.; Yung, K. W. J. Org. Chem. 2007, 72,
10114. (m) Yamada, K.-i.; Sato, T.; Hosoi, M.; Yamamoto, Y.;
Tomioka, K. Chem. Pharm. Bull. 2010, 58, 1511. (n) Arena, G.; Chen,
C. C.; Leonori, D.; Aggarwal, V. K. Org. Lett. 2013, 15, 4250.
(11) (a) Kraus, G. A.; Nagy, J. O. Tetrahedron 1985, 41, 3537.
(b) DeShong, P.; Kell, D. A. Tetrahedron Lett. 1986, 27, 3979. (c) Yoo,
S.-E.; Lee, S.-H.; Yi, K.-Y.; Jeong, N. Tetrahedron Lett. 1990, 31, 6877.
(d) Murakami, M.; Hasegawa, N.; Hayashi, M.; Ito, Y. J. Org. Chem.
1991, 56, 7356. (e) Mooiweer, H. H.; Hiemstra, H.; Specamp, W. N.
Tetrahedron 1991, 47, 3451.
(12) For the determination of optical purity of amino acids via the
corresponding Moscher’s amides, see: (a) Allen, D. A.; Tomaso, A. E.,
Jr.; Priest, O. P.; Hindson, D. F.; Hurlburt, J. L. J. Chem. Educ. 2008,
85, 698. (b) Moscher’s amide was prepared according to the
procedure for the preparation of Moscher’s ester, as described in:
Chow, S.; Kitching, W. Tetrahedron: Asymmetry 2002, 13, 779.
(13) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
(14) Smith, A. B., III; Fukui, M.; Vaccaro, H. A.; Empfield, J. R. J. Am.
Chem. Soc. 1991, 113, 2071.
D
dx.doi.org/10.1021/ol4028557 | Org. Lett. XXXX, XXX, XXX−XXX