Journal of the American Chemical Society
Article
Rev. 2009, 38, 2447. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147.
(b) Funaki, K.; Kawai, H.; Sato, T.; Oi, S. Chem. Lett. 2011, 40, 1050.
(c) Funaki, K.; Sato, T.; Oi, S. Org. Lett. 2012, 14, 6186.
(17) Stoichiometric arylation of Au(I) has been reported in the
presence of base using electron-deficient arenes (a) Lu, P.; Boorman,
T. C.; Slawin, A. M. Z.; Larrosa, I. J. Am. Chem. Soc. 2010, 132, 5580,
boronic acids (b) Partyka, D. V.; Zeller, M.; Hunter, A. D.; Gray, T. G.
Angew. Chem., Int. Ed. 2006, 45, 8188. (c) Partyka, D. V.; Zeller, M.;
Hunter, A. D.; Gray, T. G. Inorg. Chem. 2012, 51, 8394. See also ref
10f), and siloxanes (ref 16a), in the absence of base using tetraaryl
borates (d) Weber, S. G.; Zahner, D.; Rominger, F.; Straub, B. F.
Chem. Commun. 2012, 48, 11325, and stannanes (e) Meyer, N.;
Sivanathan, S.; Mohr, F. J. Organomet. Chem. 2011, 696, 1244.
(18) Roth, K. E.; Blum, S. A. Organometallics 2010, 29, 1712.
(19) See SI.
(4) (a) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-
Bahamonde, A. I. Dalton Trans. 2009, 5820. (b) Balcells, D.; Clot, E.;
Eisenstein, O. Chem. Rev. 2010, 110, 749. (c) Livendahl, M.;
Echavarren, A. M. Isr. J. Chem. 2010, 50, 630. (d) Ackermann, L.
Chem. Rev. 2011, 111, 1315.
(5) Ball, L. T.; Lloyd-Jones, G. C.; Russell, C. A. Science 2012, 337,
1644.
(6) Very low catalyst loadings of have been achieved for
mechanistically simpler Au-catalyzed reactions: Blanco Jaimes, M. C.;
Bohling, C. R. N.; Serrano-Becerra, J. M.; Hashmi, A. S. K. Angew.
̈
Chem., Int. Ed. 2013, 52, 7963.
(7) Jones, C. J.; Taube, D.; Ziatdinov, V. R.; Periana, R. A.; Nielsen,
R. J.; Oxgaard, J.; Goddard, W. A., III. Angew. Chem., Int. Ed. 2004, 43,
4626.
(8) (a) Wegner, H. A. Chimia 2009, 63, 44. (b) Wegner, H. A.;
Auzias, M. Angew. Chem., Int. Ed. 2011, 50, 8236. (c) Hopkinson, M.
N.; Gee, A. D.; Gouverneur, V. Chem.Eur. J. 2011, 17, 8248. (d) de
Haro, T.; Nevado, C. Synthesis 2011, 2530.
(9) Calculations support a Au(I)/Au(II)-dimer redox-couple for
oxidative olefin heteroarylation (ref 10a); a Au(I)/Au(III) couple was
suggested for a closely related transformation: (a) Wang, W.; Jasinski,
J.; Hammond, G. B.; Xu, B. Angew. Chem., Int. Ed. 2010, 49, 7247.
Homocoupling during gold-catalyzed cyclisations has been ascribed to
stoichiometric reduction of Au(III): (b) Hashmi, A. S. K.; Blanco, M.
C.; Fischer, D.; Bats, J. W. Eur. J. Org. Chem. 2006, 1387.
(10) Mechanistic investigations have so far focused on Selectfluor-
mediated couplings of ArB(OH)2: (a) Tkatchouk, E.; Mankad, N. P.;
Benitez, D.; Goddard, W. A., III; Toste, F. D. J. Am. Chem. Soc. 2011,
(20) Control experiments detailed in ref 5 indicate diaryliodonium
salts to be unreactive. See also ref 10g.
(21) (a) Neiland, O. Y.; Karele, B. Y. Zh. Org. Khim. 1970, 6, 885.
(b) Koser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476.
(c) Stang, P. J.; Surber, B. W.; Chen, Z. C.; Roberts, K. A.; Anderson,
A. G. J. Am. Chem. Soc. 1987, 109, 228. (d) Yusubov, M. S.; Wirth, T.
Org. Lett. 2005, 7, 519.
(22) Crabtree, R. H. Chem. Rev. 2011, 112, 1536.
(23) A range of cyclic voltammetry experiments that aimed to
characterize a ‘ligand-free’ Au(III) species were uninformative due to
interference by iodine(III) reduction, see SI. Formation of Ph3PO
from Ph3PAuCl has also been noted with Selectfluor: see ref 10c.
Oxidative oxyarylation under similar conditions forms (Ph3P)2Au+:
(a) Brenzovich, W. E.; Benitez, D.; Lackner, A. D.; Shunatona, H. P.;
Tkatchouk, E.; Goddard, W. A., III; Toste, F. D. Angew. Chem., Int. Ed.
2010, 49, 5519.
́
133, 14293. (b) Faza, O. N.; Lopez, C. S. J. Org. Chem. 2013, 78, 4929.
Selected early examples of ‘F+’-mediated processes for which the
Au(I)/Au(III) manifold has been proposed: (c) Zhang, G.; Peng, Y.;
Cui, L.; Zhang, L. Angew. Chem., Int. Ed. 2009, 48, 3112. (d) Cui, L.;
Zhang, G. Z.; Zhang, L. M. Bioorg. Med. Chem. Lett. 2009, 19, 3884.
(e) Hopkinson, M. N.; Tessier, A.; Salisbury, A.; Giuffredi, G. T.;
Combettes, L. E.; Gee, A. D.; Gouverneur, V. Chem.Eur. J. 2010, 16,
4739. (f) Hashmi, A. S. K.; Ramamurthi, T. D.; Rominger, F. J.
Organomet. Chem. 2009, 694, 592. (g) Hashmi, A. S. K.; Ramamurthi,
T. D.; Todd, M. H.; Tsang, A. S.-K.; Graf, K. Aust. J. Chem. 2010, 63,
1619.
(11) Intermolecular auration in aprotic/nondonor media: (a) Khar-
asch, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1931, 53, 3053. (b) Liddle,
K. S.; Parkin, C. J. Chem. Soc., Chem. Commun. 1972, 26. (c) de Graaf,
P. W. J.; Boersma, J.; Vanderkerk, G. J. M. J. Organomet. Chem. 1976,
105, 399. (d) Fuchita, Y.; Utsunomiya, Y.; Yasutake, M. J. Chem. Soc.,
Dalton Trans. 2001, 2330. In protic/donor media: (e) Davidson, J.
M.; Triggs, C. J. Chem. Soc. A 1968, 1324. (f) Nizova, G. V.; Shulpin,
G. B. React. Kinet. Catal. Lett. 1982, 20, 69.
(24) Initially formed Ph3PX2 will rapidly solvolyze to Ph3PO.
(25) For example, oxidation of R3PAuI with I2 occurs for PR3 =
PMe2Ph but not PMePh2 or PPh3, and for PMe3 but not PtBu3. See:
(a) Schneider, D.; Schier, A.; Schmidbaur, H. Dalton Trans. 2004,
1995.
(26) Reductive elimination of Ar3P+-O2CCF3 from Pd is accelerated
by basic phosphines, as the TS resembles nucleophilic attack by Ar3P
on the trifluoroacetate oxygen. The converse is true for Pd(OAc)2.
See: (a) Amatore, C.; Carre, E.; Jutand, A.; M’Barki, M. A.
Organometallics 1995, 14, 1818. (b) Amatore, C.; Jutand, A.;
Lemaitre, F.; Ricard, J. L.; Kozuch, S.; Shaik, S. J. Organomet. Chem.
2004, 689, 3728.
(27) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841.
(28) Whether the bromination side product is derived from the
arylsilane or the arene (or both) depends on their relative reactivity.
For example, in the coupling between 1 and 8, the latter is brominated
(→ 10), whereas in the coupling of 1 and toluene, bromodesilylation
of the silane generates 4-bromofluorobenzene (19F NMR, GC−MS).
(29) Two equivalents of oxidant are consumed in the reaction of
thtAuCl with F-IBDA/CSA. See SI.
(12) (a) Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K.
Chem. Commun. 2008, 386. (b) Kar, A.; Mangu, N.; Kaiser, H. M.;
Tse, M. K. J. Organomet. Chem. 2009, 694, 524. (c) de Haro, T.;
Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512. (d) Qiu, D.; Zheng, Z.;
Mo, F.; Xiao, Q.; Tian, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13,
4988. (e) Pradal, A.; Toullec, P. Y.; Michelet, V. Org. Lett. 2011, 13,
6086.
(30) For nonmetal-mediated oxidative bromination, see: Braddock,
D. C.; Cansell, G.; Hermitage, S. A. Synlett 2004, 461.
(31) For examples of benzylic activation during electrophilic
metalation, see: (a) Kochi, J. K.; Tang, R. T.; Bernath, T. J. Am.
Chem. Soc. 1973, 95, 7114. (b) Lau, W.; Kochi, J. K. J. Am. Chem. Soc.
1986, 108, 6720. Reduction of Au(I) in the presence of silver salts
results in benzylic activation (ref 14).
(32) Stoichiometric cross-coupling between an aryl−Au(III) species
and an arene has been reported: (a) Cambeiro, X. C.; Boorman, T. C.;
Lu, P. F.; Larrosa, I. Angew. Chem., Int. Ed. 2013, 52, 1781. (b) Hofer,
M.; Nevado, C. Tetrahedron 2013, 69, 5751.
(33) Uson, R.; Vicente, J.; Cirac, J. A.; Chicote, M. T. J. Organomet.
́
Chem. 1980, 198, 105.
(34) Reaction is inhibited when [CSA] < [F-IBDA]; see SI.
(35) For the role of MeOH in electrophilic palladation of arylsilanes,
see: Steenwinkel, P.; Gossage, R. A.; Maunula, T.; Grove, D. M.; van
Koten, G. Chem.Eur. J. 1998, 4, 763.
́ ́
(13) (a) Herrero-Gomez, E.; Nieto-Oberhuber, C.; Lopez, S.; Benet-
Buchholz, J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 5455.
(b) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand, G.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569.
(14) Savjani, N.; Bew, S. P.; Hughes, D. L.; Lancaster, S. J.;
Bochmann, M. Organometallics 2011, 31, 2534.
(15) ‘C−H/C−Si auration’ refers to the net transformation from free
reactants to Au-σ-bonded arene, not solely the C−X cleavage step.
(16) Transmetalation via a siliconate is unlikely as electronegative
substituents on Si and/or basic additives are required. We are aware of
one example of Si to Au aryl transmetalation employing arylsiloxane
and Au(I): (a) Dupuy, S.; Slawin, A. M. Z.; Nolan, S. P. Chem.Eur. J.
2012, 18, 14923. For aryltrimethylsilanes in cross-coupling, see:
J
dx.doi.org/10.1021/ja408712e | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX