Page 5 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
P coordinated to Ir (see supporting information). After the Ir–
L9i complex stirred in CDCl3 with 10 equiv. of Et3N for 24 h, the
31P NMR displayed no obvious change, which excluded the
posibility of cyclometalated iridium complex formation.20 Based
on the above results, we proposed the possible reaction
pathway (Scheme 4). With the help of Ti(OiPr)4, ketone 1 reacts
with amine 2 to form the emaine intermediate int-1, which
accepts a proton and tranforms into iminium int-2. int-1 and
int-2 are under fast interconversion. The iridium(I) complex I is
oxidized to iridium(III) by molecular iodine.21 Then DABCO or
Et3N facilitates the heterolytic cleavage of the hydrogen
molecule by iridium to form III. This step is reversible, which
results in the hydrogen incorporation on C1 of 3ah (Scheme 3).
Conflicts of interest
There are no conflicts to declare.
DOI: 10.1039/C9SC00323A
Acknowledgements
Financial support from the National Natural Science Foundation
of China (21772155, 21402155 and 21602172) is gratefully
acknowledged.
Notes and references
1
2
L. M. Jarvis, Chem. Eng. News, 2016, 94, 12–17.
S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54,
3451–3479.
3
4
5
(a) T. C. Nugent (Ed.) Chiral Amine Synthesis: Methods,
Developments and Applications, Wiley-VCH, Weinheim, 2010;
(b) W. Li, and X. Zhang (Eds.) Stereoselective Formation of
Amines, Top. Curr. Chem., 2014, 343; (c) D. C. Blakemore, L.
Castro, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson
and A. Wood, Nat. Chem., 2018, 10, 383–394.
(a) T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010,
352, 753–819; (b) J.-H. Xie, S.-F. Zhu and Q.-L. Zhou, Chem.
Rev., 2011 , 111, 1713−1760; (c) J.-H. Xie, S.-F. Zhu and Q.-L.
Zhou, Chem. Soc. Rev., 2012, 41, 4126−4139; (d) D. J. Ager, A.
H. M. de Vries and J. G. de Vries, Chem. Soc. Rev., 2012, 41,
3340–3380.
(a) M. P. Magee and J. R. Norton, J. Am. Chem. Soc., 2001, 123,
1778–1779; (b) Y. Ji, G.-S. Feng, M.-W. Chen, L. Shi, H. Du and
Y.-G. Zhou, Org. Chem. Front., 2017, 4, 1125–1129.
C. Wang and J. Xiao, Top. Curr. Chem., 2014, 343, 261−282.
J. Ward and R. Wohlgemuth, Curr. Org. Chem., 2010, 14,
1914−1927.
(a) H. Alinezhad, H. Yavari and F. Salehian, Curr. Org. Chem.,
2015, 19, 1021–1049; (b) I. B. Seiple, Z. Zhang, P. Jakubec, A.
Langlois-Mercier, P. M. Wright, D. T. Hog, K. Yabu, S. R. Allu,
T. Fukuzaki, P. N. Carlsen, Y. Kitamura, X. Zhou, M. L. Condakes,
F. T. Szczypiński, W. D. Green and A. G. Myers, Nature, 2016,
533, 338–345; (c) R. V. Jagadeesh, K. Murugesan, A. S.
Alshammari, H. Neumann, M.-M. Pohl, J. Radnik and M. Beller,
Science, 2017, 358, 326–332; (d) K. S. Hayes, Appl. Catal. A-
Gen., 2001, 221, 187–195.
Conclusions
In summary, we have unprecedentedly applied secondary
amines as the N-sources in direct catalytic asymetric reductive
H
N
O
R
R
Ti(OiPr)4
NR2
N
N
+
HNR2
Ar
Ar
Ar
1
2
OH
+ iPrOH
int-2
int-1
Ti(OiPr)3
I
I
Cl
*P
S
I2
H2
Cl
S
*P
Cl
I
*P
S
Ir
Ir
Ir
II
I
S
H
H
N
I
N
6
7
TS
8
H
H
N
N
NR2
-
+
N
N
Ar
3
I
Cl
*P
Ir
I
S
H
III
R
N
9
H.-U. Blaser, H.-P. Buser, H.-P. Jalett, B. Pugin and Spindler, F.
Synlett., 1999, 867−868.
R
Ar
10 Selected examples: (a) C. K. Savile, J. M. Janey, E. C. Mundorff,
J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J.
Fleitz, J. Brands, P. N. Devine, G. W. Huisman and G. J. Hughes,
Science, 2010, 329, 305–309; (b) R. C. Simon, N. Richter, E.
Busto and W. Kroutil, ACS Catal., 2014, 4, 129–143; (c) I. V.
Pavlidis, M. S. Weiß, M. Genz, P. Spurr, S. P. Hanlon, B. Wirz,
H. Iding and U. T. Bornscheuer, Nat. Chem., 2016, 8, 1076–
1082; (d) G. A. Aleku, S. P. France, H. Man, J. Mangas-Sanchez,
S. L. Montgomery, M. Sharma, F. Leipold, S. Hussain, G.
Grogan and N. J. Turner, Nat. Chem., 2017, 9, 961–969.
11 Selected examples: (a) R. I. Storer, D. E. Carrera, Y. Ni and D.
W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 84–86; (b) V.
N. Wakchaure, J. Zhou, S. Hoffmann and B. List, Angew.
Chem., Int. Ed., 2010, 49, 4612–4614; (c) X. Xiao, Y. Xie, C. Su,
M. Liu and Y. Shi, J. Am. Chem. Soc., 2011, 133, 12914–12917.
12 (a) R. Kadyrov and T. H. Riermeier, Angew. Chem., Int. Ed.,
2003, 42, 5472–5474; (b) Y. Chi, Y. Zhou and X. Zhang, J. Org.
Chem., 2003, 68, 4120–4122; (c) D. Steinhuebel, Y. Sun, K.
Matsumura, N. Sayo and T. Saito, J. Am. Chem. Soc., 2009,
131, 11316−11317; (d) C. Li, B. Villa-Marcos and J. Xiao, J. Am.
Chem. Soc., 2009, 131, 6967−6969; (e) N. A. Strotman, C. A.
Baxter, K. M. J. Brands, E. Cleator, S. W. Krska, R. A. Reamer,
Scheme 4 Proposed reaction pathways.
amination, thus providing a solution to an important and
persisting problem in this research area. Accelerated by the
additive set and iridium-phosphoramidite ligand catalysts, they
coupled smoothly with various ketones to afford chiral tertiary
amines in excellent yields and high levels of stereocontrol.
Benefited from the highly modulated feature of the BINOL-
based phosphoramidite ligands, a variety of this series of ligands
with divergent electronic and spatial properties could be rapidly
developed to accommodate substrates with different
structures for achieving excellent stereoselectivity. This
methodology is operationally simple, step- and cost-efficient
while utilizing readily available bulk chemicals. With our
protocol, related chiral tertiary amine can be synthesized in a
more convenient and effective manner.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins