European Journal of Organic Chemistry
10.1002/ejoc.201600891
FULL PAPER
dimethylethylenediamine (21.5 µL, 0.2 mmol) were added sequentially
by syringe. The mixture was stirred at 110 °C for 24 h. The cooled
reaction mixture was diluted with EtOAc (20 mL), and washed with a
10% ammonia solution (5 mL) and brine (5 mL). Volatiles were
removed in vacuo and the residue was purified by flash
chromatography on a short column of silica gel (eluent: petroleum
ether / ethyl acetate 95:5) to give the title compound as an off-white
solid (148 mg, 91%).
[19] I. P. Beletskaya, A. S. Sigeev, A. S. Peregudov, P. V. Petrovskii, J.
Organomet. Chem. 2004, 689, 3810–3812.
[20] I. P. Beletskaya, A. S. Sigeev, A. S. Peregudov, P. V. Petrovskii,
Mendeleev Commun. 2006, 16, 250–251.
[21] G. Danoun, B. Bayarmagnai, M. F. Grünberg, L. J. Gooßen, Angew.
Chem. Int. Ed. 2013, 52, 7972–7975.
[22] G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J. Goossen,
Chem. Sci. 2014, 5, 1312.
[23] S. Shaaban, A. Jolit, D. Petkova, N. Maulide, Chem. Commun. 2015,
51, 13902–13905.
1H NMR (300 MHz, CDCl3): δ = 7.86 (d, J = 2.2 Hz, 1 H), 7.71 (d, J =
2.2 Hz, 1 H), 7.68-7.60 (m, 2 H), 7.17-7.11 (m, 2 H), 6.46 (t, J = 2.2
Hz, 1 H) ppm. 19F NMR (282 MHz, CDCl3): δ = -116.1 ppm. 13C NMR
(75.5 MHz, CDCl3): δ = 161.1 (d, 1JCF = 245.7 Hz), 141.1, 136.6,
126.9, 121.0 (d, 3JCF = 8.3 Hz), 116.2 (d, 2JCF = 22.9 Hz), 107.7 ppm.
[24] D. Toummini, A. Tlili, J. Bergès, F. Ouazzani, M. Taillefer, Chem.
Eur. J. 2014, 20, 14619–14623.
[25] Griess P., Liebigs Ann. Chem. 1858, 106, 123–125.
[26] M. P. Doyle, W. Wierenga, M. A. Zaleta, J. Org. Chem. 1972, 37,
1597–1601.
For a detailed experimental part see supporting information
[27] M. P. Doyle, W. J. Bryker, J. Org. Chem. 1979, 44, 1572–1574.
[28] N. Oger, F. Le Callonnec, D. Jacquemin, E. Fouquet, E. Le Grognec,
F.-X. Felpin, Adv. Synth. Catal. 2014, 356, 1065–1071.
[29] S. Bräse, Acc. Chem. Res. 2004, 37, 805–816.
[30] D. B. Kimball, M. M. Haley, Angew. Chem. Int. Ed. 2002, 41, 3338–
3351.
Acknowledgements
IF thanks the MNESR for fellowship. We thank the CNRS,
ENSCP and ENS as well as the ANR program CD2I
(CuFeCCBond) for financial support.
[31] S. Dahmen, S. Bräse, Angew. Chem. Int. Ed. 2000, 39, 3681–3683.
[32] F. P. Dwyer, J. Am. Chem. Soc. 1941, 63, 78–81.
[33] F. W. Wassmundt, W. F. Kiesman, J. Org. Chem. 1997, 62, 8304–
8308.
[34] P. S. Canning, K. McCrudden, H. Maskill, B. Sexton, J. Chem. Soc.
Perkin Trans. 2, 1999, 2735–2740.
Keywords: Copper • arylation • diazonium • mechanism •
nitrogen heterocycle
[35] J. E. Packer, C. J. Heighway, H. M. Miller, B. C. Dobson, Aust. J.
Chem. 1980, 33, 965–977.
i
This is consistent with previous results showing that ortho substituted
[36] C. Galli, Chem. Rev. 1988, 88, 765–792.
arenediazonium salts failed to give efficient coupling.
Attempts to sublimate commercial CuOAc to access a purer Cu(I) source
[37] P. J. Canning and others, Chem. Commun. 1998, 1971–1972.
[38] T. J. Broxton, D. L. Roper, J. Org. Chem. 1976, 41, 2157–2162.
[39] D. F. DeTar, M. N. Turetzky, J. Am. Chem. Soc. 1955, 77, 1745–
1750.
ii
were unfruitful.
[40] D. F. DeTar, M. N. Turetzky, J. Am. Chem. Soc. 1956, 78, 3925–
3928.
[1]
[2]
F. Ullmann, Berichte Dtsch. Chem. Ges. 1903, 36, 2382–2384.
F. Ullmann, E. Illgen, Berichte Dtsch. Chem. Ges. 1914, 47, 380–
383.
[41] J. F. Bunnett and H. Takayama, J. Org. Chem. 1968, 33, 1924–
1928.
[3]
[4]
[5]
[6]
I. Goldberg, Berichte Dtsch. Chem. Ges. 1907, 40, 4541–4546.
I. Goldberg, Berichte Dtsch. Chem. Ges., 1906, 39, 1691–1692.
J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651–2710.
G. Evano, N. Blanchard and M. Toumi, Chem. Rev. 2008, 108,
3054–3131.
[42] R. Pazo-Llorente, H. Maskill, C. Bravo-Diaz, E. Gonzalez-Romero,
Eur. J. Org. Chem. 2006, 9, 2201–2209.
[43] U. Costas-Costas, E. Gonzalez-Romero, C. Bravo-Diaz, Helv. Chim.
Acta 2001, 84, 632–648.
[44] T. J. Broxton, J. F. Bunnett, C. H. Paik, J. Org. Chem. 1977, 42,
643–649.
[7]
[8]
[9]
F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954–
6971.
[45] C. Bravo-Díaz, L. S. Romsted, M. Harbowy, M. E. Romero-Nieto, E.
Gonzalez-Romero, J. Phys. Org. Chem. 1999, 12, 130–140.
[46] R. Pazo-LLorente, E. Gonzalez-Romero, C. Bravo-Diaz, Int. J.
Chem. Kinet. 2000, 32, 210–220.
E. Sperotto, G. P. M. van Klink, G. van Koten, J. G. de Vries, Dalton
Trans. 2010, 39, 10338–10351.
I. P. Beletskaya, A. V. Cheprakov, Organometallics 2012, 31, 7753–
7808.
[47] D. F. DeTar, T. Kosuge, J. Am. Chem. Soc. 1958, 80, 6072–6077.
[48] J. F. Bunnett, C. Yijima, J. Org. Chem. 1977, 42, 639–643.
[49] R. Cai, M. Lu, E. Y. Aguilera, Y. Xi, N. G. Akhmedov, J. L. Petersen,
H. Chen, X. Shi, Angew. Chem. Int. Ed. 2015, 54, 8772–8776.
[50] K. Shin, S.-W. Park, S. Chang, J. Am. Chem. Soc. 2015, 137,
8584–8592.
[10] N. Xia, M. Taillefer, Chem. Eur. J. 2008, 14, 6037–6039.
[11] M. Fan, W. Zhou, Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 2016,
6211-6215.
[12] W. Zhou, M. Fan, J. Yin, Y. Jiang, D. Ma, J. Am. Chem. Soc. 2015,
137, 11942–11945.
[13] F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 2013, 11,
1582.
[51] N. Susperregui, K. Miqueu, J.-M. Sotiropoulos, F. Le Callonnec, E.
Fouquet, F.-X. Felpin, Chem. Eur. J. 2012, 18, 7210–7218.
[52] J. Wu, Y. Gu, X. Leng, Q. Shen, Angew. Chem. 2015, 127, 7758–
7762.
[14] X.-F. Wu, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2011, 50,
11142–11146.
[15] A. Roglans, A. Pla-Quintana, M. Moreno-Mañas, Chem. Rev. 2006,
106, 4622–4643.
[53] L. He, G. Qiu, Y. Gao, J. Wu, Org. Biomol. Chem. 2014, 12, 6965.
[54] Y. Li, J. Pu, X. Jiang, Org. Lett. 2014, 16, 2692–2695.
[55] X. Wang, Y. Xu, F. Mo, G. Ji, D. Qiu, J. Feng, Y. Ye, S. Zhang, Y.
Zhang, J. Wang, J. Am. Chem. Soc. 2013, 135, 10330–10333.
[56] J. Goslar, P. B. Sczaniecki, M. M. Strawiak, J. Mroziński, Transit.
Met. Chem. 1988, 13, 81–86.
[16] N. Oger, M. d’Halluin, E. Le Grognec, F.-X. Felpin, Org. Process
Res. Dev. 2014, 18, 1786–1801.
[17] T. Sandmeyer, Berichte Dtsch. Chem. Ges. 1884, 17, 1633–1635.
[18] I. Beletskaya, A. Sigeev, A. Peregudov, P. Petrovskii, Synthesis
2007, 2534–2538.
This article is protected by copyright. All rights reserved