Organometallics
Article
Schlosser, M. Relative Basicities of ortho-, meta-, and para-Substituted
Aryllithiums. J. Org. Chem. 2009, 74, 222−229.
(8) (a) Merkushev, E. B. Advances in the Synthesis of Iodoaromatic
Compounds. Synthesis 1988, 1988, 923−937. (b) Rozen, S.; Zamir, D.
A Novel Aromatic Iodination Method Using F2. J. Org. Chem. 1990,
55, 3552−3555.
REFERENCES
■
(1) Larock, R. C.; Zhang, L. Halogenation of Organometallics. In
Comprehensive Organic Transformations: A Guide to Functional Group
Preparations, 3rd ed.; Larock, R. C., Ed.; Wiley: Hoboken, NJ, 2018;
pp 1467−1480.
(2) (a) Gschwend, H. W.; Rodriguez, H. R. Heteroatom-Facilitated
Lithiations. Org. React. 1979, 26, 1−360. (b) Snieckus, V. Directed
Ortho Metalation. Tertiary Amide and O-Carbamate Directors in
Synthetic Strategies for Polysubstituted Aromatics. Chem. Rev. 1990,
90, 879−933. (c) Cottet, F.; Schlosser, M. Three Chloro-
(trifluoromethyl)pyridines as Model Substrates for Regioexhaustive
Functionalization. Eur. J. Org. Chem. 2004, 2004, 3793−3798.
(d) Collum, D. B.; McNeil, A. J.; Ramirez, A. Lithium
Diisopropylamide: Solution Kinetics and Implications for Organic
Synthesis. Angew. Chem., Int. Ed. 2007, 46, 3002−3017. (e) Viciu, M.
S.; Gupta, L.; Collum, D. B. Mechanism of Lithium Diisopropyla-
mide-Mediated Substitution of 2,6-Difluoropyridine. J. Am. Chem. Soc.
2010, 132, 6361−6365. (f) Fukuda, T.; Ohta, T.; Sudo, E.; Iwao, M.
Directed Lithiation of N-Benzenesulfonyl-3-bromopyrrole. Electro-
phile-Controlled Regioselective Functionalization via Dynamic
Equilibrium between C-2 and C-5 Lithio Species. Org. Lett. 2010,
12, 2734−2737. (g) Hoepker, A. C.; Gupta, L.; Ma, Y.; Faggin, M. F.;
Collum, D. B. Regioselective Lithium Diisopropylamide-Mediated
Ortholithiation of 1-Chloro-3-(trifluoromethyl)benzene: Role of
Autocatalysis, Lithium Chloride Catalysis, and Reversibility. J. Am.
Chem. Soc. 2011, 133, 7135−7151. (h) Florio, S.; Salomone, A.
Heterocycle-Mediated ortho-Functionalization of Aromatic Com-
pounds: The DoM Methodology and Synthetic Utility. Synthesis
2016, 48, 1993−2008.
(3) Mohler, M. L.; Bohl, C. E.; Jones, A.; Coss, C. C.; Narayanan, R.;
He, Y.; Jin Hwang, D.; Dalton, J. T.; Miller, D. D. Nonsteroidal
Selective Androgen Receptor Modulators (SARMs): Dissociating the
Anabolic and Androgenic Activities of the Androgen Receptor for
Therapeutic Benefit. J. Med. Chem. 2009, 52, 3597−3617.
(4) Turnbull, P. S.; Cadilla, R. Indolecarbonitriles as Selective
Androgen Receptor Modulators. PCT Int. Appl. WO
2014013309A120140123, 2014.
(5) (a) McConville, F. X. The Pilot Plant Real Book: A Unique
Handbook for the Chemical Process Industry; FXM Engineering and
Design: Worcester, MA, 2002. (b) Stoessel, F. Thermal Safety of
Chemical Processes: Risk Assessment and Process Design; Wiley-VCH:
Weinheim, Germany, 2008. (c) Davis, E. M.; Viswanath, S. K. Heat
Transfer Based Scale-Down of Chemical Reactions. Org. Process Res.
Dev. 2012, 16, 1360−1370.
(9) (a) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. A
Simple Catalytic Method for the Regioselective Halogenation of
Arenes. Org. Lett. 2006, 8, 2523−2526. (b) Mei, T.-S.; Giri, R.;
Maugel, N.; Yu, J.-Q. PdII-Catalyzed Monoselective ortho Halogen-
ation of C-H Bonds Assisted by Counter Cations: A Complementary
Method to Directed ortho Lithiation. Angew. Chem., Int. Ed. 2008, 47,
5215−5219. (c) Schroder, N.; Wencel-Delord, J.; Glorius, F. High-
Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho
Bromination and Iodination of Arenes. J. Am. Chem. Soc. 2012, 134,
8298−8301. (d) Partridge, B. M.; Hartwig, J. F. Sterically Controlled
Iodination of Arenes via Iridium-Catalyzed C-H Borylation. Org. Lett.
2013, 15, 140−143.
(11) (a) Kupracz, L.; Kirschning, A. Multiple Organolithium
Generation in the Continuous Flow Synthesis of Amitriptyline. Adv.
Synth. Catal. 2013, 355, 3375−3380. (b) Pieber, B.; Glasnov, T.;
Kappe, C. O. Flash Carboxylation: Fast Lithiation − Carboxylation
Sequence at Room Temperature in Continuous Flow. RSC Adv. 2014,
4, 13430−13433. (c) Westermann, T.; Mleczko, L. Heat Management
in Microreactors for Fast Exothermic Organic Syntheses − First
Design Principles. Org. Process Res. Dev. 2016, 20, 487−494.
(12) (a) Newby, J. A.; Blaylock, D. W.; Witt, P. M.; Turner, R. M.;
Heider, P. L.; Harji, B. H.; Browne, D. L.; Ley, S. V. Reconfiguration
of a Continuous Flow Platform for Extended Operation: Application
to a Cryogenic Fluorine-Directed ortho-Lithiation Reaction. Org.
Process Res. Dev. 2014, 18, 1221−1228. (b) Kopach, M. E.; Cole, K.
P.; Pollock, P. M.; Johnson, M. D.; Braden, T. M.; Webster, L. P.;
McClary Groh, J.; McFarland, A. D.; Schafer, J. P.; Adler, J. J.;
Rosemeyer, M. Flow Grignard and Lithiation: Screening Tools and
Development of Continuous Processes for a Benzyl Alcohol Starting
Material. Org. Process Res. Dev. 2016, 20, 1581−1592. (c) Thaisri-
vongs, D. A.; Naber, J. R.; McMullen, J. P. Using Flow to Outpace
Fast Proton Transfer in an Organometallic Reaction for the
Manufacture of Verubecestat (MK-8931). Org. Process Res. Dev.
2016, 20, 1997−2004. (d) Laue, S.; Haverkamp, V.; Mleczko, L.
Experience with Scale-Up of Low-Temperature Organometallic
Reactions in Continuous Flow. Org. Process Res. Dev. 2016, 20,
480−486. (e) Feng, R.; Ramchandani, S.; Ramalingam, B.; Wei
Benjamin Tan, S.; Li, C.; Khean Teoh, S.; Boodhoo, K.; Sharratt, P.
Intensification of Continuous Ortho-Lithiation at Ambient Con-
ditions − Process Understanding and Assessment of Sustainability
Benefits. Org. Process Res. Dev. 2017, 21, 1259−1271. (f) Usutani, H.;
Cork, D. G. Effective Utilization of Flow Chemistry: Use of Unstable
Intermediates, Inhibition of Side Reactions, and Scale-Up for Boronic
Acid Synthesis. Org. Process Res. Dev. 2018, 22, 741−746.
(6) (a) Yoshida, J.; Takahashi, Y.; Nagaki, A. Flash chemistry: flow
chemistry that cannot be done in batch. Chem. Commun. 2013, 49,
9896−9904. (b) Gutmann, B.; Cantillo, D.; Kappe, C. O.
Continuous-Flow TechnologyA Tool for the Safe Manufacturing
of Active Pharmaceutical Ingredients. Angew. Chem., Int. Ed. 2015, 54,
6688−6729. (c) Baumann, M.; Baxendale, I. R. The Synthesis of
Active Pharmaceutical Ingredients (APIs) using Continuous Flow
Chemistry. Beilstein J. Org. Chem. 2015, 11, 1194−1219. (d) Porta, R.;
Benaglia, M.; Puglisi, A. Flow Chemistry: Recent Developments in the
Synthesis of Pharmaceutical Products. Org. Process Res. Dev. 2016, 20,
2−25. (e) Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.;
Battilocchio, C.; Ley, S. V.; Stevens, C. V. Taming Hazardous
Chemistry by Continuous Flow Technology. Chem. Soc. Rev. 2016,
45, 4892−4928. (f) May, S. A. Flow Chemistry, Continuous
Processing, and Continuous Manufacturing: A Pharmaceutical
Perspective. J. Flow Chem. 2017, 7, 137−145. (g) Plutschack, M.
B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker’s Guide
to Flow Chemistry. Chem. Rev. 2017, 117, 11796−11893.
(13) Cataldo, F. Iodine: A Ring Opening Polymerization Catalyst for
Tetrahydrofuran. Eur. Polym. J. 1996, 32, 1297−1302.
(14) The 1H NMR signals assigned to 2b appear as singlets, whereas
coupling to F should be observed (as it is for 2a). We attribute this
apparent lack of coupling to a rapid monomer/dimer equilibrium for
2b at −70 °C, analogous to that observed for PhLi. For 2a, steric
hindrance likely prevents dimerization, enabling observation of
coupling. For solution dynamics of PhLi, see: Reich, H. J.; Green,
D. P.; Medina, M. A.; Goldenberg, W. S.; Gudmundsson, B. O.;
Dykstra, R. R.; Phillips, N. H. Aggregation and Reactivity of
Phenyllithium Solutions. J. Am. Chem. Soc. 1998, 120, 7201−7210.
(15) (a) Li, X.; Leonori, D.; Sheikh, N. S.; Coldham, I. Synthesis of
1-Substituted Tetrahydroisoquinolines by Lithiation and Electrophilic
Quneching Guided by In Situ IR and NMR Spectroscopy and
Application to the Synthesis of Salsolidine, Carnegine and
Laudanosine. Chem. - Eur. J. 2013, 19, 7724−7730. (b) Keles, H.;
Susanne, F.; Livingstone, H.; Hunter, S.; Wade, C.; Bourdon, R.;
Rutter, A. Development of a Robust and Reusable Microreactor
(7) (a) Schlosser, M. The 2 × 3 Toolbox of Organometallic
Methods for Regiochemically Exhaustive Functionalization. Angew.
Chem., Int. Ed. 2005, 44, 376−393. (b) Hyla-Kryspin, I.; Grimme, S.;
Buker, H. H.; Nibbering, N. M. M.; Cottet, F.; Schlosser, M. The Gas
̈
Phase Acidity of Oligofluorobenzenes and Oligochlorobenzenes:
About the Additivity or Non-Additivity of Substituent Effects.
Chem. - Eur. J. 2005, 11, 1251−1256. (c) Gorecka-Kobylinska, J.;
H
Organometallics XXXX, XXX, XXX−XXX