10.1002/anie.201805479
Angewandte Chemie International Edition
COMMUNICATION
(Figure S27 and S28, Supporting Information). A closer view of
Keywords: binary phosphonium salts • H-bonding • polar order •
ferroelectricity • polymer composites • energy harvesters
the output voltage and current plots confirm
a single
piezoelectric response generated from each press and release
cycle of the composite film (Figures 4b and 4d). The maximum
current density (CD) and power density (PD) values of 0.28
μAcm‒2 and 1.74 μWcm‒3, respectively, were observed for the
10% composite (Figure S32, Supporting Information). The
performance of the DPDP·PF6/PDMS system is fairly
comparable to several composites derived from ferroelectric
(organic-inorganic and inorganic)-nonpiezoelectric polymer
materials.8a,21c,23b, 22
The observed room temperature ε' values for the neat PDMS,
3%, 5%, 10% and 20% DPDP·PF6/PDMS were found to be 5.6,
5.8, 6.9, 7.3 and 7.5, respectively, at 1 kHz (Figure S33,
Supporting Information). A linear increase in ε' values from 3 to
20 wt % indicates the contribution from the ferroelectric particles
for the overall dipole moment of the composite films.23 Similarly,
a marginal increase in the piezoelectric coefficient (d33) values
from 3 to 5 pC/N has been observed upon increasing the wt% of
the ferroelectric component from 3% to 20% (Figure S34,
Supporting Information). This clearly indicates that the organic-
polymer matrix interface plays a vital role in determining the
dielectric and piezoelectric properties of the DPDP·PF6/PDMS
composites. Furthermore, it is to be noted that the effective
energy harvesting performance of these materials depends on
the layer thickness, strength of the mechanical force applied,
structural morphologies and the weight ratio between polymer
and piezoelectric filler.24
[1]
(a) K. Asadi, M. Li, P. W. M. Blom, M. Kemerink, D. M. De Leeuw,
Mater. Today 2011, 14, 592–599; (b) B. Saparov, D. B. Mitzi, Chem.
Rev. 2016, 116, 4558–4596; (c) J. S. Manser, J. A. Christians, P. V.
Kamat, Chem. Rev. 2016, 116, 12956–13008.
[2]
(a) S. Das, J. Appenzeller, Nano Lett. 2011, 11, 4003–4007; (b) C. A. P.
De Araujo, J. D. Cuchiaro, D. L. Mc Millan, M. C. Scott, J. F. Scott,
Nature 1995, 374, 627–629; (c) S. T. Han, Y. Zhou, V. A. L. Roy, Adv.
Mater. 2013, 25, 5425–5449; (d) J. F. Scott, Science 2007, 315, 954-
959; (e) L. W. Martin, A. M. Rappe, Nat. Rev. Mater. 2016, 2, 16087; (f)
Y. Yuan, Z. Xiao, B. Yang, J. Huang, J. Mater. Chem. A 2014, 2, 6027–
6041; (g) C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M.
Alexe, J. Kreisel, B. Dkhil, Adv. Mater. 2016, 28, 5153–5168; (h) A.
Stroppa, D. Di Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini,
M.H. Whangbo, S. Picozzi, Nat. Commun. 2014, 5, 5900.
[3]
[4]
(a) C. R. Bowen, H. A. Kim, P. M. Weaver, S. Dunn, Energy Environ.
Sci. 2014, 7, 25–44; (b) O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renew.
Sustain. Energy Rev. 2014, 39, 748–764; (c) F. Invernizzi, S. Dulio, M.
Patrini, G. Guizzetti, P. Mustarelli, Chem. Soc. Rev. 2016, 45, 5455–
5473.
(a) J. H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S. W. Kim, J. H. Kim,
J. Mater. Chem. A 2016, 4, 7983–7999; (b) J. Siang, M. H. Lim, M.
Salman Leong, Int. J. Energy Res. 2018, 42, 1866–1893; (c) F. Yi, H.
Ren, J. Shan, X. Sun, D. Wei, Z. Liu, Chem. Soc. Rev. 2018, DOI
10.1039/C7CS00849J; (d) Y. Zhang, M. Xie, V. Adamaki, H. Khanbareh,
C. R. Bowen, Chem. Soc. Rev. 2017, 46, 7757–7786; (e) F. Hu, Q. Cai,
F. Liao, M. Shao, S. T. Lee, Small 2015, 11, 5611–5628; (f) Z. L. Wang,
J. Chen, L. Lin, Energy Environ. Sci. 2015, 8, 2250–2282; (g) F. R. Fan,
W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283–4305; (h) Z. L. Wang,
G. Zhu, Y. Yang, S. Wang, C. Pan, Mater. Today 2012, 15, 532–543.
(a) Z. L. Wang, J. Song, Science 2006, 312, 242–246; (b) M. Lee, C. Y.
Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, Z. L.
Wang, Adv. Mater. 2012, 24, 1759–1764; (c) Z. L. Wang, W. Wu,
Angew. Chem. Int. Ed. 2012, 51, 11700–11721; (d) W. Weng, P. Chen,
S. He, X. Sun, H. Peng, Angew. Chem. Int. Ed. 2016, 55, 6140–6169.
(a) W. Zhang, R. G. Xiong, Chem. Rev. 2012, 112, 1163–1195; (b) T.
Hang, W. Zhang, H. Y. Ye, R. G. Xiong, Chem. Soc. Rev. 2011, 40,
3577-3598.
In summary, we have reported the synthesis of
a new
[5]
[6]
ferroelectric polar organic binary salt of DPDP·PF6 containing
organo- and amino functionalities. Ferroelectric measurements
on the single crystals of this salt gave a Pr value ~6 μCcm‒2. The
‒
1D-arrangement of organo aminophosphonium cations and PF6
anions aided by the presence of N-H...F intermolecular
hydrogen bond in its asymmetric lattice helps in the effective
alignment of dipoles responsible for ferroelectric behaviour. Also,
it exhibits high thermal and phase stability and sharp polarization
response. In combination with polymeric PDMS films, device
structures with excellent mechanical flexibility for various wt% (3,
5, 7, 10, 20%) of DPDP·PF6 were prepared. The mechanical
energy harvesting performance of these devices show the
current density of 0.28 μAcm‒2, and power density of 1.74
μWcm‒3 for the 10 wt% DPDP·PF6/PDMS composite. These
results demonstrate the effectiveness of organic ferroelectric
materials for energy harvesting applications and promise their
potential utility in future wearable electronics.
[7]
[8]
X. Ren, H. Fan, Y. Zhao, Z. Liu, ACS Appl. Mater. Interfaces 2016, 8,
26190–26197.
(a) R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G.
Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun, Y. Zheng, Adv.
Funct. Mater. 2016, 26, 7708–7716; (b) R. Ding, X. Zhang, G. Chen, H.
Wang, R. Kishor, J. Xiao, F. Gao, K. Zeng, X. Chen, X. W. Sun, Y.
Zheng, Nano Energy 2017, 37, 126–135.
[9]
(a) J. Li, X. Wang, APL Mater. 2017, 5, 073801; (b) L. Persano, C.
Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J. A.
Rogers, Nat. Commun. 2013, 4, 1610–1633.
[10] (a) S. H. Park, H. B. Lee, S. M. Yeon, J. Park, N. K. Lee, ACS Appl.
Mater. Interfaces 2016, 8, 24773–24781; (b) Z. Pi, J. Zhang, C. Wen, Z.
bin Zhang, D. Wu, Nano Energy 2014, 7, 33–41;
[11]
(a) J. H. Park, N. Kurra, M. N. AlMadhoun, I. N. Odeh, H. N. Alshareef,
J. Mater. Chem. C 2015, 3, 2366–2370; (b) S. Y. Yang, J. Seidel, S. J.
Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F.
Scott, J. W. Ager, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5,
143–147; (c) E. J. Ko, E. J. Lee, M. H. Choi, T. H. Sung, D. K. Moon,
Sensors Actuators, A Phys. 2017, 259, 112–120.
Acknowledgements
This work was supported by ARMREB, DRDO, India via Grant
No. ARMREB/MAA/2017/189 (R. B.), and SERB, India via Grant
No. EMR/2016/000614 (R.B.) and Nanomission Project, DST,
India via Grant No. SR/NM/TP-13/2016. T. V. thanks the UGC,
India for the fellowship. We thank A. Torris for X-ray tomography
experiments.
[12] The related [Ph3(iPrNH)P]·PF6 (TPAP·PF6), and [Ph(iPrNH)3P]·PF6
(PTAP·PF6) were found to crystallize in the centrosymmetric monoclinic
space groups C2/c and P21/n, respectively (Figures S16 and S17,
supporting Information).
[13] (a) K. Asadi, M. A. van der Veen, Eur. J. Inorg. Chem. 2016, 4332–
4344; (b) S. Horiuchi, Y. Tokura, Nat. Mater. 2008, 7, 357–366; (c) D.
This article is protected by copyright. All rights reserved.