Journal of the American Chemical Society
Communication
Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005,
127, 12046. (c) Chiou, S. J.; Innocent, J.; Riordan, C. G.; Lam, K. C.;
Liable-Sands, L.; Rheingold, A. L. Inorg. Chem. 2000, 39, 4347.
(6) (a) Lacy, D. C.; Mukherjee, J.; Lucas, R. L.; Day, V. W.; Borovik,
A. S. Polyhedron 2013, 52, 261. (b) Gupta, R.; Lacy, D. C.; Bominaar,
E. L.; Borovik, A. S.; Hendrich, M. P. J. Am. Chem. Soc. 2012, 134,
9775. (c) Lacy, D. C.; Gupta, R.; Stone, K. L.; Greaves, J.; Ziller, J. W.;
Hendrich, M. P.; Borovik, A. S. J. Am. Chem. Soc. 2010, 132, 12188.
(d) Sen Soo, H.; Komor, A. C.; Iavarone, A. T.; Chang, C. J. Inorg.
Chem. 2009, 48, 10024. (e) Wada, A.; Harata, M.; Hasegawa, K.;
Jitsukawa, K.; Masuda, H.; Mukai, M.; Kitagawa, T.; Einaga, H. Angew.
Chem., Int. Ed. 1998, 37, 798. (f) Kim, S.; Saracini, C.; Siegler, M. A.;
Drichko, N.; Karlin, K. D. Inorg. Chem. 2012, 51, 12603.
electrophilicity of the terminal oxo ligand. However other
factors may contribute to the strong increase in reactivity seen
for 2, including the accessibility of a high-spin quintet state,
which cannot be completely ruled out by the available data. The
metal-oxo group may also be more exposed in 2 as compared to
[FeIV(O)(N4Py)]2+ because of replacement of an equatorial py
donor with a less sterically encumbered sulfide donor, allowing
for easier approach of substrate. The novel reactivity seen for 2
provides motivation for further examination of first- and
second-coordination-sphere effects in this, and other non-heme
iron model complexes.
(7) (a) McDonald, A. R.; Bukowski, M. R.; Farquhar, E. R.; Jackson,
T. A.; Koehntop, K. D.; Seo, M. S.; De Hont, R. F.; Stubna, A.; Halfen,
ASSOCIATED CONTENT
* Supporting Information
Detailed experimental procedures, ESI-MS data, crystallo-
■
S
J. A.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2010, 132,
̈
17118. (b) Annaraj, J.; Kim, S.; Seo, M. S.; Lee, Y. M.; Kim, Y.; Kim, S.
J.; Choi, Y. S.; Jang, H. G.; Nam, W. Inorg. Chim. Acta 2009, 362, 1031.
(c) Bukowski, M. R.; Koehntop, K. D.; Stubna, A.; Bominaar, E. L.;
graphic information for 1, 3, and 4, Mossbauer spectroscopy,
̈
details for kinetic studies, and computational investigations.
This material is available free of charge via the Internet at
Halfen, J. A.; Munck, E.; Nam, W.; Que, L., Jr. Science 2005, 310, 1000.
̈
(8) (a) Sickerman, N. S.; Park, Y. J.; Ng, G. K. Y.; Bates, J. E.; Hilkert,
M.; Ziller, J. W.; Furche, F.; Borovik, A. S. Dalton Trans. 2012, 41,
4358. (b) Aullon, G.; Bellamy, D.; Brammer, L.; Bruton, E. A.; Orpen,
A. G. Chem. Commun. 1998, 653.
AUTHOR INFORMATION
■
Corresponding Authors
(9) (a) Kumar, D.; Sastry, G. N.; Goldberg, D. P.; de Visser, S. P. J.
Phys. Chem. A. 2012, 116, 582. (b) Kumar, D.; Thiel, W.; de Visser, S.
P. J. Am. Chem. Soc. 2011, 133, 3869.
Notes
(10) (a) Park, J.; Morimoto, Y.; Lee, Y. M.; Nam, W.; Fukuzumi, S. J.
Am. Chem. Soc. 2012, 134, 3903. (b) Park, M. J.; Lee, J.; Suh, Y.; Kim,
J.; Nam, W. J. Am. Chem. Soc. 2006, 128, 2630. (c) Seo, M. S.; Jang, H.
G.; Kim, J.; Nam, W. Bull. Korean Chem. Soc. 2005, 26, 971.
(11) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.;
Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.; Shaik,
S.; Nam, W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19181.
(12) Latifi, R.; Sainna, M. A.; Rybak-Akimova, E. V.; de Visser, S. P.
Chem.Eur. J. 2013, 19, 4058.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The NIH (D.P.G., GM62309 and GM101153) is gratefully
acknowledged for financial support. G.N.L.J. thanks the
Marsden Fund and The International Mobility Fund
administered by Royal Society of New Zealand. I. I.-B. and
O. T. gratefully acknowledge support through the “Solar
Technologies Go Hybrid” initiative of the German Federate
State of Bavaria.
́
(13) (a) Wilson, S. A.; Chen, J.; Hong, S.; Lee, Y. M.; Clemancey,
M.; Garcia-Serres, R.; Nomura, T.; Ogura, T.; Latour, J. M.; Hedman,
B.; Hodgson, K. O.; Nam, W.; Solomon, E. I. J. Am. Chem. Soc. 2012,
134, 11791. (b) McDonald, A. R.; Guo, Y. S.; Vu, V.; Bominaar, E. L.;
Munck, E.; Que, L., Jr. Chem. Sci. 2012, 3, 1680.
̈
REFERENCES
■
(1) (a) McDonald, A. R.; Que, L., Jr. Coord. Chem. Rev. 2013, 257,
414. (b) Shook, R. L.; Borovik, A. S. Inorg. Chem. 2010, 49, 3646.
(c) de Visser, S. P.; Rohde, J. U.; Lee, Y. M.; Cho, J.; Nam, W. Coord.
Chem. Rev. 2013, 257, 381.
(2) (a) McQuilken, A. C.; Goldberg, D. P. Dalton Trans. 2012, 41,
10883. (b) McQuilken, A. C.; Jiang, Y.; Siegler, M. A.; Goldberg, D. P.
J. Am. Chem. Soc. 2012, 134, 8758. (c) Jiang, Y.; Widger, L. R.; Kasper,
G. D.; Siegler, M. A.; Goldberg, D. P. J. Am. Chem. Soc. 2010, 132,
12214. (d) Sallmann, M.; Siewert, I.; Fohlmeister, L.; Limberg, C.;
Knispel, C. Angew. Chem., Int. Ed. 2012, 51, 2234. (e) Badiei, Y. M.;
Siegler, M. A.; Goldberg, D. P. J. Am. Chem. Soc. 2011, 133, 1274.
(f) Liu, T. B.; Li, B.; Singleton, M. L.; Hall, M. B.; Darensbourg, M. Y.
J. Am. Chem. Soc. 2009, 131, 8296. (g) O’Toole, M. G.; Kreso, M.;
Kozlowski, P. M.; Mashuta, M. S.; Grapperhaus, C. A. J. Biol. Inorg.
Chem. 2008, 13, 1219. (h) Lugo-Mas, P.; Taylor, W.; Schweitzer, D.;
Theisen, R. M.; Xu, L.; Shearer, J.; Swartz, R. D.; Gleaves, M. C.;
DiPasquale, A.; Kaminsky, W.; Kovacs, J. A. Inorg. Chem. 2008, 47,
11228.
(3) (a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J. U.; Song, W. J.;
Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
̈
2004, 126, 472. (b) Klinker, E. J.; Kaizer, J.; Brennessel, W. W.;
Woodrum, N. L.; Cramer, C. J.; Que, L., Jr. Angew. Chem., Int. Ed.
2005, 44, 3690.
(4) Sahu, S.; Widger, L. R.; Quesne, M. G.; de Visser, S. P.;
Matsumura, H.; Moenne-Loccoz, P.; Siegler, M. A.; Goldberg, D. P. J.
̈
Am. Chem. Soc. 2013, 135, 10590.
(5) (a) Zheng, P.; Takayama, S. I. J.; Mauk, A. G.; Li, H. B. J. Am.
Chem. Soc. 2012, 134, 4124. (b) Dey, A.; Okamura, T.; Ueyama, N.;
D
dx.doi.org/10.1021/ja410240c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX